Previous |  Up |  Next

Article

References:
[1] Bellos, A.: Alexova dobrodružství v zemi čísel. Dokořán, Praha, 2015.
[2] Domenico, Di A.: The golden ratio–the right triangle–and the arithmetic, geometric, and harmonic means. The Mathematical Gazette, 89 (2005), 515, 261–261. DOI 10.1017/S0025557200177769
[3] Gielis, J.: The Geometrical Beauty of Plants. Atlantis Press, Paris, 2017. MR 3644202
[4] Høibakk, R., Lukkassen, D., Meidell, A., Persson, L. E.: Geometric construction of some Lehmer means. Mathematics, 6 (2018), 11, 251, https://doi.org/10.3390/math6110251 DOI 10.3390/math6110251
[5] Lokesha, V., Padmanabhan, S., Nagaraja, K. M., Simsek, Y.: Relation between Greek means and various means. General Mathematics, 17 (2009), 3, 3–13. MR 2656751
[6] Scimone, A.: Some nice relations between right-angled triangles and the Golden Section. Teaching Mathematics and Its Applications, 30 (2011), 85–94. DOI 10.1093/teamat/hrr002
[7] Spíchal, L.: The geometric constructions of the Greek means. Symmetry: Culture and Science, 34 (2023), 4, 407–416. DOI 10.26830/symmetry_2023_4_407
[8] de Spinadel, V. W.: From the golden mean to chaos. Nueva Librería, Buenos Aires, 1998.
[9] de Spinadel, V. W., Paz, J. M.: A new family of irrational numbers with curious properties. Humanistic Mathematics Network Journal, 19 (1999), 33–37. DOI 10.5642/hmnj.199901.19.14
[10] Sugimoto, T.: Inducing the Symmetries Out of the Complexity: The Kepler Triangle and Its Kin as a Model Problem. In: Darvas, G. (eds): Complex Symmetries. Birkhäuser, Cham, 2021. MR 4381427
[11] Wikipedia: Kepler triangle. Wikipedia, https://en.wikipedia.org/wiki/Kepler_triangle [cit. 2024-06-11].
[12] Wikipedia: Contraharmonic mean. Wikipedia, https://en.wikipedia.org/wiki/Contraharmonic_mean [cit. 2024-06-05].
Partner of
EuDML logo