Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
regularizing effect; interplay; minimizer; noncoercive integral functional
Summary:
We are interested in regularizing effect of the interplay between the coefficient of zero order term and the datum in some noncoercive integral functionals of the type $$ \mathcal {J} (v)= \int _\Omega j(x,v,\nabla v) {\rm d}x +\int _\Omega a(x) |v|^{2} {\rm d} x -\int _\Omega fv {\rm d}x, \quad v\in W^{1,2}_{0}(\Omega ), $$ where $\Omega \subset \mathbb R^N$, $j$ is a Carathéodory function such that $\xi \mapsto j(x,s,\xi )$ is convex, and there exist constants $ 0\le \tau <1$ and $M>0$ such that $$ \frac { |\xi |^{2}}{(1+|s|)^{\tau }}\leq j(x,s,\xi )\leq M|\xi |^2 $$ for almost all $x\in \Omega $, all $s\in \mathbb R$ and all $\xi \in \mathbb R^N$. We show that, even if $0<a(x)$ and $f(x)$ only belong to $L^{1}(\Omega )$, the interplay $$|f(x)|\leq 2 Qa(x) $$ implies the existence of a minimizer $u \in W_0^{1,2} (\Omega )$ which belongs to $L^{\infty }(\Omega )$.
References:
[1] Arcoya, D., Boccardo, L.: Regularizing effect of the interplay between coefficients in some elliptic equations. J. Func. Anal. 268 (2015), 1153-1166. DOI 10.1016/j.jfa.2014.11.011 | MR 3304596 | Zbl 1317.35082
[2] Arcoya, D., Boccardo, L.: Regularizing effect of $L^q$ interplay between coefficients in some elliptic equations. J. Math. Pures Appl. (9) 111 (2018), 106-125. DOI 10.1016/j.matpur.2017.08.001 | MR 3760750 | Zbl 1390.35067
[3] Boccardo, L., Croce, G.: Elliptic Partial Differential Equations: Existence and Regularity of Distributional Solutions. De Gruyter Studies in Mathematics 55. Walter De Gruyter, Berlin (2013). DOI 10.1515/9783110315424 | MR 3154599 | Zbl 1293.35001
[4] Boccardo, L., Orsina, L.: Existence and regularity of minima for integral functionals noncoercive in the energy space. Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 25 (1997), 95-130. MR 1655511 | Zbl 1015.49014
[5] Capone, C., Napoli, A. Passarelli di: Regularity results to a class of elliptic equations with explicit $u$-dependence and Orlicz growth. Adv. Differ. Equ. 29 (2024), 757-782. DOI 10.57262/ade029-0910-757 | MR 4740327 | Zbl 07854804
[6] Capone, C., Radice, T.: A regularity result for a class of elliptic equations with lower order terms. J. Elliptic Parabol. Equ. 6 (2020), 751-771. DOI 10.1007/s41808-020-00082-w | MR 4169451 | Zbl 1451.35042
[7] Degiovanni, M., Marzocchi, M.: Quasilinear elliptic equations with natural growth and quasilinear elliptic equations with singular drift. Nonlinear Anal., Theory Methods Appl., Ser. A 185 (2019), 206-215. DOI 10.1016/j.na.2019.03.008 | MR 3928322 | Zbl 1421.35130
[8] Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003). DOI 10.1142/5002 | MR 1962933 | Zbl 1028.49001
[9] Li, Z.: Existence result to a parabolic equation with quadratic gradient term and an $L^1$ source. Acta Appl. Math. 163 (2019), 145-156. DOI 10.1007/s10440-018-0217-7 | MR 4008700 | Zbl 1423.35206
[10] Moreno-Mérida, L., Porzio, M. M.: Existence and asymptotic behavior of a parabolic equation with $L^1$ data. Asymptotic Anal. 118 (2020), 143-159. DOI 10.3233/ASY-191558 | MR 4113595 | Zbl 1454.35206
[11] Radice, T.: A regularity result for nonuniformly elliptic equations with lower order terms. Stud. Math. 276 (2024), 1-17. DOI 10.4064/sm230104-18-3 | MR 4756832 | Zbl 7887996
[12] Zhang, C., Zhou, S.: Bounded very weak solutions for some non-uniformly elliptic equation with $L^1$ datum. Ann. Acad. Sci. Fenn., Math. 42 (2017), 95-103. DOI 10.5186/aasfm.2017.4205 | MR 3558517 | Zbl 1367.35072
Partner of
EuDML logo