Previous |  Up |  Next

Article

Title: Generalized fractional integral operators on weak Choquet spaces over quasi-metric measure spaces (English)
Author: Futamura, Toshihide
Author: Shimomura, Tetsu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 3
Year: 2024
Pages: 905-913
Summary lang: English
.
Category: math
.
Summary: We prove the boundedness of the generalized fractional maximal operator $M_{\alpha }$ and the generalized fractional integral operator $I_{\alpha }$ on weak Choquet spaces with respect to Hausdorff content over quasi-metric measure spaces. (English)
Keyword: fractional integral operator
Keyword: quasi-metric measure space
Keyword: Hausdorff content
Keyword: weak Choquet space
Keyword: Ahlfors regular
MSC: 28A12
MSC: 42B25
MSC: 46E30
idZBL: Zbl 07953685
idMR: MR4804967
DOI: 10.21136/CMJ.2024.0133-24
.
Date available: 2024-10-03T12:40:19Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152588
.
Reference: [1] Adams, D. R.: A note on Choquet integrals with respect to Hausdorff capacity.Function Spaces and Applications Lecture Notes in Mathematics 1302. Springer, Berlin (1988), 115-124. Zbl 0658.31009, MR 0942261, 10.1007/BFb0078867
Reference: [2] Adams, D. R.: Choquet integrals in potential theory.Publ. Mat., Barc. 42 (1998), 3-66. Zbl 0923.31006, MR 1628134, 10.5565/PUBLMAT_42198_01
Reference: [3] Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces.EMS Tracts in Mathematics 17. EMS Press, Zürich (2011). Zbl 1231.31001, MR 2867756, 10.4171/099
Reference: [4] Hajłasz, P., Koskela, P.: Sobolev met Poincaré.Mem. Am. Math. Soc. 145 (2000), 101 pages. Zbl 0954.46022, MR 1683160, 10.1090/memo/0688
Reference: [5] Hatano, N., Kawasumi, R., Saito, H., Tanaka, H.: Choquet integrals, Hausdorff content and fractional operators.(to appear) in Bull. Aust. Math. Soc. MR 4803163, 10.1017/S000497272400011X
Reference: [6] Hedberg, L. I.: On certain convolution inequalities.Proc. Am. Math. Soc. 36 (1972), 505-510. Zbl 0283.26003, MR 0312232, 10.1090/S0002-9939-1972-0312232-4
Reference: [7] Heinonen, J.: Lectures on Analysis on Metric Spaces.Universitext. Springer, New York (2001). Zbl 0985.46008, MR 1800917, 10.1007/978-1-4613-0131-8
Reference: [8] Kairema, A.: Two-weight norm inequalities for potential type and maximal operators in a metric space.Publ. Mat., Barc. 57 (2013), 3-56. Zbl 1284.42055, MR 3058926, 10.5565/PUBLMAT_57113_01
Reference: [9] Mizuta, Y., Shimomura, T., Sobukawa, T.: Sobolev's inequality for Riesz potentials of functions in non-doubling Morrey spaces.Osaka J. Math. 46 (2009), 255-271. Zbl 1186.31003, MR 2531149
Reference: [10] Orobitg, J., Verdera, J.: Choquet integrals, Hausdorff content and the Hardy-Littlewood maximal operator.Bull. Lond. Math. Soc. 30 (1998), 145-150. Zbl 0921.42016, MR 1489325, 10.1112/S0024609397003688
Reference: [11] Sawano, Y., Shimomura, T.: Fractional maximal operator on Musielak-Orlicz spaces over unbounded quasi-metric measure spaces.Result. Math. 76 (2021), Article ID 188, 22 pages. Zbl 1479.42055, MR 4305494, 10.1007/s00025-021-01490-7
Reference: [12] Watanabe, H.: Estimates of fractional maximal functions in a quasi-metric space.Nat. Sci. Rep. Ochanomizu Univ. 56 (2006), 21-31. Zbl 1113.42018, MR 2214968
Reference: [13] Watanabe, H.: Estimates of maximal functions by Hausdorff contents in a metric space.Potential Theory in Matsue Advanced Studies in Pure Mathematics 44. Mathematical Society of Japan, Tokyo (2006), 377-389. Zbl 1125.42008, MR 2279770, 10.2969/aspm/04410377
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo