Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Grothendieck ring; simple module; quantum double; quaternion group
Summary:
Let $\Bbbk $ be an algebraically closed field of characteristic $p\neq 2$, and let $Q_8$ be the quaternion group. We describe the structures of all simple modules over the quantum double $D(\Bbbk Q_8)$ of group algebra $\Bbbk Q_8$. Moreover, we investigate the tensor product decomposition rules of all simple $D(\Bbbk Q_8)$-modules. Finally, we describe the Grothendieck ring $G_0(D(\Bbbk Q_8))$ by generators with relations.
References:
[1] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511623608 | MR 1314422 | Zbl 0834.16001
[2] Chen, H.-X.: Irreducible representations of a class of quantum doubles. J. Algebra 225 (2000), 391-409. DOI 10.1006/jabr.1999.8135 | MR 1743667 | Zbl 0952.16032
[3] Chen, H.-X.: Finite-dimensional representations of a quantum double. J. Algebra 251 (2002), 751-789. DOI 10.1006/jabr.2002.9144 | MR 1919152 | Zbl 1019.16025
[4] Chen, H.-X.: Representations of a class of Drinfeld's doubles. Commun. Algebra 33 (2005), 2809-2825. DOI 10.1081/AGB-200065383 | MR 2159507 | Zbl 1081.16039
[5] Dong, J.: Grothendieck ring of quantum double of finite groups. Czech. Math. J. 60 (2010), 869-879. DOI 10.1007/s10587-010-0054-y | MR 2672420 | Zbl 1212.16057
[6] Dong, J., Chen, H.: The representations of quantum double of dihedral groups. Algebra Colloq. 20 (2013), 95-108. DOI 10.1142/S1005386713000096 | MR 3020721 | Zbl 1281.16042
[7] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155. Springer, New York (1995). DOI 10.1007/978-1-4612-0783-2 | MR 1321145 | Zbl 0808.17003
[8] Kondo, H., Saito, Y.: Indecomposable decomposition of tensor products of mudules over the restricted quantum universal enveloping algebra associated to $\mathfrak{sl}_2$. J. Algebra 330 (2011), 103-129. DOI 10.1016/j.jalgebra.2011.01.010 | MR 2774620 | Zbl 1273.17019
[9] Liu, G., Oystaeyen, F. Van, Zhang, Y.: Reprensentations of the small quasi-quantum group $Qu_q(\mathfrak{sl}_2)$. Bull. Belg. Math. Soc. - Simon Stevin 23 (2016), 779-800. DOI 10.36045/bbms/1483671626 | MR 3593575 | Zbl 1364.17020
[10] Liu, G., Oystaeyen, F. Van, Zhang, Y.: Quasi-Frobenius-Lusztig kernels for simple Lie algebras. Trans. Am. Math. Soc. 369 (2017), 2049-2086. DOI 10.1090/tran/6731 | MR 3581227 | Zbl 1407.17019
[11] Majid, S.: Doubles of quasitriangular Hopf algebras. Commun. Algebra 19 (1991), 3061-3073. DOI 10.1080/00927879108824306 | MR 1132774 | Zbl 0767.16014
[12] Mason, G.: The quantum double of a finite group and its role in conformal field theory. Groups '93 Galway/St. Andrews. Volume 2 London Mathematical Society Lecture Note Series 212. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511629297.009 | MR 1337285 | Zbl 0856.20005
[13] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Regional Conference Series in Mathematics 82. AMS, Providence (1993). DOI 10.1090/cbms/082 | MR 1243637 | Zbl 0793.16029
[14] Suter, R.: Modules over $\mathfrak{U}_q(\mathfrak{sl}_2)$. Commun. Math. Phys. 163 (1994), 359-393. DOI 10.1007/BF02102012 | MR 1284788 | Zbl 0851.17015
[15] Witherspoon, S. J.: The representation ring of the quantum double of a finite group. J. Algebra 179 (1996), 305-329. DOI 10.1006/jabr.1996.0014 | MR 1367852 | Zbl 0840.19001
[16] Xiao, J.: Finite dimensional representations of $U_t$(sl(2)) at roots of unity. Can. J. Math. 49 (1997), 772-787. DOI 10.4153/CJM-1997-038-4 | MR 1471056 | Zbl 0901.17009
Partner of
EuDML logo