Previous |  Up |  Next

Article

Title: On the lattice of pronormal subgroups of dicyclic, alternating and symmetric groups (English)
Author: Mitkari, Shrawani
Author: Kharat, Vilas
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 3
Year: 2024
Pages: 427-438
Summary lang: English
.
Category: math
.
Summary: In this paper, the structures of collection of pronormal subgroups of dicyclic, symmetric and alternating groups $G$ are studied in respect of formation of lattices ${\rm L}(G)$ and sublattices of ${\rm L}(G)$. It is proved that the collections of all pronormal subgroups of ${\rm A}_n$ and S$_n$ do not form sublattices of respective ${\rm L}({\rm A}_n)$ and ${\rm L}({\rm S}_n)$, whereas the collection of all pronormal subgroups ${\rm LPrN}({\rm Dic}_n)$ of a dicyclic group is a sublattice of ${\rm L}({\rm Dic}_n)$. Furthermore, it is shown that ${\rm L}({\rm Dic}_n)$ and ${\rm LPrN}({\rm Dic}_n$) are lower semimodular lattices. (English)
Keyword: alternating group
Keyword: dicyclic group
Keyword: pronormal subgroup
Keyword: lattice of subgroups
Keyword: lower semimodular lattice
MSC: 06A06
MSC: 06A07
MSC: 06B20
MSC: 06B23
MSC: 20D25
MSC: 20D30
MSC: 20D40
MSC: 20E15
MSC: 20F22
MSC: 20K27
idZBL: Zbl 07953712
idMR: MR4801111
DOI: 10.21136/MB.2023.0146-22
.
Date available: 2024-09-11T13:49:39Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152543
.
Reference: [1] Benesh, B.: A classification of certain maximal subgroups of alternating groups.Computational Group Theory and the Theory of Groups Contemporary Mathematics 470. AMS, Providence (2008), 21-26. Zbl 1159.20004, MR 2478411, 10.1090/conm/470
Reference: [2] Călugăreanu, G.: Lattice Concepts of Module Theory.Kluwer Texts in the Mathematical Sciences 22. Kluwer, Dordrecht (2000). Zbl 0959.06001, MR 1782739, 10.1007/978-94-015-9588-9
Reference: [3] Giovanni, F. de, Vincenzi, G.: Pronormality in infinite groups.Math. Proc. R. Ir. Acad. 100A (2000), 189-203. Zbl 0980.20020, MR 1883103
Reference: [4] Grätzer, G.: General Lattice Theory.Academic Press, New York (1978). Zbl 0385.06015, MR 0509213, 10.1007/978-3-0348-7633-9
Reference: [5] Hall, P.: Theorems like Sylow's.Proc. Lond. Math. Soc., III. Ser. 6 (1956), 286-304. Zbl 0075.23907, MR 0077533, 10.1112/plms/s3-6.2.286
Reference: [6] Lazorec, M.-S., Tărnăuceanu, M.: On some probabilistic aspects of (generalized) dicyclic groups.Quaest. Math. 44 (2021), 129-146. Zbl 1505.20064, MR 4211983, 10.2989/16073606.2019.1673498
Reference: [7] Luthar, I. S.: Algebra. Volume 1. Groups.Narosa Publishing, New Delhi (1996). Zbl 0943.20001
Reference: [8] Mann, A.: A criterion for pronormality.J. Lond. Math. Soc. 44 (1969), 175-176. Zbl 0165.34003, MR 0238954, 10.1112/jlms/s1-44.1.175
Reference: [9] Mitkari, S., Kharat, V., Agalave, M.: On the structure of pronormal subgroups of dihedral groups.J. Indian Math. Soc. (N.S) 90 (2023), 401-410. Zbl 7742572, MR 4613640
Reference: [10] Mitkari, S., Kharat, V., Ballal, S.: On some subgroup lattices of dihedral, alternating and symmetric groups.Discuss. Math., Gen. Algebra Appl. 43 (2023), 309-326. Zbl 1538.20013, MR 4664771, 10.7151/dmgaa.1425
Reference: [11] Peng, T. A.: Pronormality in finite groups.J. Lond. Math. Soc., II. Ser. 3 (1971), 301-306. Zbl 0209.05502, MR 0276319, 10.1112/jlms/s2-3.2.301
Reference: [12] Rose, J. S.: Finite soluble groups with pronormal system normalizers.Proc. Lond. Math. Soc., III. Ser. 17 (1967), 447-469. Zbl 0153.03602, MR 0212092, 10.1112/plms/s3-17.3.447
Reference: [13] Schmidt, R.: Subgroup Lattices of Groups.de Gruyter Expositions in Mathematics 14. Walter de Gruyter, Berlin (1994). Zbl 0843.20003, MR 1292462, 10.1515/9783110868647
Reference: [14] Stern, M.: Semimodular Lattices: Theory and Applications.Encyclopedia of Mathematics and Its Applications 73. Cambridge University Press, Cambridge (1999). Zbl 0957.06008, MR 1695504, 10.1017/CBO9780511665578
Reference: [15] Suzuki, M.: Structure of a Group and the Structure of its Lattice of Subgroups.Springer, Heidelberg (1956). Zbl 0070.25406, MR 0083487, 10.1007/978-3-642-52758-6
Reference: [16] Vdovin, E. P., Revin, D. O.: Pronormality and strong pronormality of subgroups.Algebra Logic 52 (2013), 15-23. Zbl 1279.20028, MR 3113475, 10.1007/s10469-013-9215-z
.

Files

Files Size Format View
MathBohem_149-2024-3_10.pdf 248.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo