Article
Keywords:
general connection; linear connection; natural operator
Summary:
We classify classical linear connections $A(\Gamma ,\Lambda ,\Theta )$ on the total space $Y$ of a fibred manifold $Y\rightarrow M$ induced in a natural way by the following three objects: a general connection $\Gamma $ in $Y\rightarrow M$, a classical linear connection $\Lambda $ on $M$ and a linear connection $\Theta $ in the vertical bundle $VY\rightarrow Y$. The main result says that if $ \mathrm{dim}(M)\ge 3$ and $ \mathrm{dim}(Y)-\mathrm{dim}(M) \ge 3$ then the natural operators $A$ under consideration form the $17$ dimensional affine space.
References:
[1] Gancarzewicz, J.:
Horizontal lifts of linear connections to the natural vector bundles. Research Notes in Math., vol. 121, Pitman, 1985, pp. 318–341.
MR 0864879
[2] Kobayashi, S., Nomizu, K.:
Foundations of Differential Geometry. Interscience Publishers New York London, 1963.
MR 1533559 |
Zbl 0119.37502
[4] Kolář, I., Michor, P.W., Slovák, J.:
Natural Operations in Differential Geometry. Springer-Verlag, 1993.
MR 1202431