Previous |  Up |  Next

Article

Keywords:
general connection; linear connection; natural operator
Summary:
We classify classical linear connections $A(\Gamma ,\Lambda ,\Theta )$ on the total space $Y$ of a fibred manifold $Y\rightarrow M$ induced in a natural way by the following three objects: a general connection $\Gamma $ in $Y\rightarrow M$, a classical linear connection $\Lambda $ on $M$ and a linear connection $\Theta $ in the vertical bundle $VY\rightarrow Y$. The main result says that if $ \mathrm{dim}(M)\ge 3$ and $ \mathrm{dim}(Y)-\mathrm{dim}(M) \ge 3$ then the natural operators $A$ under consideration form the $17$ dimensional affine space.
References:
[1] Gancarzewicz, J.: Horizontal lifts of linear connections to the natural vector bundles. Research Notes in Math., vol. 121, Pitman, 1985, pp. 318–341. MR 0864879
[2] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Interscience Publishers New York London, 1963. MR 1533559 | Zbl 0119.37502
[3] Kolář, I.: Induced connections on total spaces of fibred bundles. Int. J. Geom. Methods Mod. Phys. 4 (2010), 705–711. DOI 10.1142/S021988781000452X | MR 2669064
[4] Kolář, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag, 1993. MR 1202431
[5] Mikulski, W.M.: The induced connections on total spaces of fibered manifolds. Publ. Math. (Beograd) 97 (111) (2015), 149–160. DOI 10.2298/PIM140712001M | MR 3331243
Partner of
EuDML logo