Previous |  Up |  Next

Article

Keywords:
vector bundle; sphere bundle over sphere; microbundle; homotopy equivalence; homeomorphism; surgery; characteristic class
Summary:
We calculate the structure sets in the sense of surgery theory of total spaces of bundles over eight-dimensional sphere with fibre a seven-dimensional sphere, in which manifolds homotopy equivalent to the total spaces are organized, and we investigate the question, which of the elements in these structure sets can be realized as such bundles.
References:
[1] Adams, J.F.: On the groups $J(X)$, $IV$. Topology 5 (1966), 21–71. DOI 10.1016/0040-9383(66)90004-8 | MR 0198470
[2] Bredon, G.E.: Topology and Geometry. Graduate Texts in Mathematics, vol. 139, Springer-Verlag Inc., New York, 1993. MR 1224675
[3] Chang, S., Weinberger, S.: A course on surgery theory. Annals of Mathematics Studies, vol. 211, Princeton University Press, 2021. MR 4207574
[4] Crowley, D., Escher, C.M.: A classification of $S^3$-bundles over $S^4$. Differential Geom. Appl. 18 (3) (2003), 363–380. DOI 10.1016/S0926-2245(03)00012-3 | MR 1975035
[5] Dold, A., Lashof, R.: Principal quasi-fibration and fibre homotopy equivalences of the bundles. Illinois J. Math. 3 (1959), 285–305. DOI 10.1215/ijm/1255455128 | MR 0101521
[6] Grey, M.: On the classification of total space of $S^7$-bundles over $S^8$. Master's thesis, Humboldt University, Berlin, 2012.
[7] Kirby, R.C., Siebenmann, L.C.: Foundational essays on topological manifolds, smoothings, and triangulations. Annals of Mathematics Studies, vol. 88, Princeton University Press, 1977. MR 0645390
[8] Kitchloo, N., Shankar, K.: On complex equivalent to $S^3$-bundles over $S^4$. Int. Math. Res. Not. IMRN 2001 (8) (2001), 381–394. DOI 10.1155/S1073792801000186 | MR 1827083
[9] Madsen, I.B., Milgram, R.J.: The Classifying Spaces For Surgery and Cobordism of Manifolds. Princeton University Press, New Jersey, 1979. MR 0548575
[10] Milnor, J.: On manifolds homeomorphic to the $7$-sphere. Ann. of Math. (2) 64 (2) (1956), 399–405. DOI 10.2307/1969983 | MR 0082103
[11] Ranicki, A.: Algebraic ${L}$-theory and topological manifolds. Cambridge University Press, 1992. MR 1211640
[12] Ranicki, A.: On The Novikov Conjecture. Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993), London Math. Soc. Lecture Note Ser., vol. 226, Cambridge Univ. Press, Cambridge, 1995, pp. 272–337. MR 1388304
[13] Ranicki, A.: Algebraic and Geometric Surgery. Oxford Mathematical Monograph, Oxford Science Publication, 2002, ISBN 978-0198509240. MR 2061749
[14] Shimada, N.: Differentiable structures on the $15$-sphere and Pontrjagin classes of certain manifolds. Nagoya Math. J. 12 (1957), 59–69. DOI 10.1017/S0027763000021942 | MR 0096223 | Zbl 0145.20303
[15] Tamura, I.: On Pontrjagin classes and homotopy types of the manifolds. J. Math. Soc. Japan 9 (2) (1957), 250–262. DOI 10.2969/jmsj/00920250 | MR 0091475
[16] Tamura, I.: Homeomorphic classification of total spaces of sphere bundles over spheres. J. Math. Soc. Japan 10 (1) (1958), 29–42. DOI 10.2969/jmsj/01010029 | MR 0096225
[17] Toda, H., Saito, Y., Yokota, I.: Notes on the generator of $\pi _{7}(SO(n))$. Mem. Coll. Sci. Univ. Kyoto 30 (1957), 227–230. MR 0091474
[18] Wall, C.T.C.: Surgery on Compact Manifolds. Mathematical Surveys and Monographs, vol. 69, AMS, 1999. MR 1687388
[19] Whitehead, G.W.: On products in homotopy groups. Ann. of Math. (2) 40 (3) (1946), 460–475. DOI 10.2307/1969085 | MR 0016672
[20] Whitehead, G.W.: A generalization of the Hopf invariant. Ann. of Math. (2) 50 (1) (1950), 192–237. DOI 10.2307/1969506 | MR 0041435
Partner of
EuDML logo