[1] Baccelli, F., Cohen, G., Olsder, G. J., Quadrat, J. P.:
Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, Chichester 1992.
MR 1204266
[3] Cuninghame-Green, R. A.:
Minimax Algebra, Lecture Notes in Economics and Mathematical Systems, Vol. 166. Springer, Berlin 1979.
MR 0580321
[4] Gondran, M., Minoux, M.:
Graphs, Dioids and Semirings: New Models and Algorithms. Springer, New York 2008.
MR 2389137 |
Zbl 1201.16038
[5] Gotoh, J., Uryasev, S.:
Two pairs of families of polyhedral norms versus $\ell_p$-norms: proximity and applications in optimization. Math. Program. 156 (2016), 391-431.
DOI |
MR 3459206
[6] Heidergott, B., Olsder, G. J., Woude, J. van der:
Max Plus at Work: Modeling and Analysis of Synchronized Systems. Princeton University Press, Princeton 2005.
MR 2188299
[7] Joswig, M.:
Essentials of Tropical Combinatorics. American Mathematical Society, 2021.
MR 4423372
[8] Krivulin, N.: Methods of Idempotent Algebra for Problems in Modeling and Analysis of Complex Systems. Saint Petersburg University Press, St. Petersburg 2009. (in Russian)
[9] Krivulin, N.: Solution of linear equations and inequalities in idempotent vector spaces. Int. J. Appl. Math. Inform. 7 (2013), 14-23.
[10] Li, P.:
A note on resolving the inconsistency of one-sided max-plus linear equations. Kybernetika 55 (2019), 531-539.
DOI |
MR 4015997
[11] Li, P.:
Solving the sensor cover energy problem via integer linear programming. Kybernetika 57 (2021), 568-593.
DOI
[12] Li, P.:
Linear optimization over the approximate solutions of a system of max-min equations. Fuzzy Sets Systems 484 (2024), 108946.
DOI |
MR 4721551
[13] Li, P., Fang, S. C.:
On the resolution and optimization of a system of fuzzy relational equations with sup-$T$ composition. Fuzzy Optim. Decision Making 7 (2008), 169-214.
DOI |
MR 2403173 |
Zbl 1169.90493
[14] Tsiamis, A., Maragos, P.:
Sparsity in max-plus algebra and systems. Discrete Event Dynamic Systems 29 (2019), 163-189.
DOI |
MR 3969320
[15] Tsilivis, N., Tsiamis, A., Maragos, P.:
Toward a sparsity theory on weighted lattices. J. Math. Imaging Vision 64 (2022), 705-717.
DOI |
MR 4476213