[1] Alguliyev, R. M., Aliguliyev, R. M., Alakbarov, R. G.:
Constrained K-means algorithm for resource allocation in mobile cloudlets. Kybernetika 59 (2023), 1, 88-109.
DOI
[2] Alnasser, S., Bennaceur, H.: An efficient genetic algorithm for the global robot path planning problem. In: Sixth International Conference on Digital Information and Communication Technology and its Applications (DICTAP), Turkey 2016, pp. 97-102.
[3] Ang, K. M., El-kenawy, E. S. M., Abdelhamid, A. A., Ibrahim, A., Alharbi, A. H., Khafaga, D. S., Tiang, S. S., Lim, W. H.:
Optimal design of convolutional neural network architectures using teaching-learning-based optimization for image classification. Symmetry 14 (2022), 2323.
DOI
[4] Ansari, A. Q., Katiyar, I.: Comparison and analysis of obstacle avoiding path planning of mobile robot by using ant colony optimization and teaching learning based optimization techniques. In: Proc. First International Conference on Information and Communication Technology for Intelligent Systems, Volume 2. Smart Innovation, Systems and Technologies, 2016, pp. 563-574.
[5] Aouf, A., Boussaid, L., Sakly, A.:
TLBO-based adaptive neurofuzzy controller for mobile robot navigation in a strange environment. Comput. Intell. Neurosci. 4 (2018).
DOI
[6] Ar, Y.:
An initialization method for the latent vectors in probabilistic matrix factorization for sparse datasets. Evolution. Intell. 13 (2020), 2, 269-281.
DOI
[7] Ar, Y., Amrahov, S. Emrah, Gasilov, N., Yigit-Sert, S.:
A new curve fitting based rating prediction algorithm for recommender systems. Kybernetika 58 (2022), 3, 440-455.
DOI
[8] Bezier, P.:
Style, mathematics and NC. Computer-aided Design 22 (1990), 9, 524-526.
DOI |
MR 1856142
[9] Bodhale, D., Afzulpurkar, N., Thanh, N. T.: Path planning for a mobile robot in a dynamic environment. In: IEEE International Conference on Robotics and Biomimetics, Thailand 2009, pp. 2115-2120.
[10] Bouchekara, H., Abido, M., Boucherma, M.:
Optimal power flow using teaching-learning-based optimization technique. Electric Power Systems Research 114 (2014), 49-59.
DOI
[11] Chaari, I., Koubaa, A., Bennaceur, H., Trigui, S., Al-Shalfan, K.: A hybrid ACO-GA algorithm for robot path planning. In: IEEE Congress on Evolutionary Computation, Brisbane 2012, pp. 1-8.
[12] Chia, S. H., Su, K. L., Guo, J. H., Chung, C. Y.: Ant colony system based mobile robot path planning. In: IEEE International Conference on Genetic and Evolutionary Computing, China 2010, pp. 210-213.
[13] Dai, Y., Yu, J., Zhang, C., Zhan, B., Zheng, X.:
A novel whale optimization algorithm of path planning strategy for mobile robots. Appl. Intell. 53 (2023), 10843-10857.
DOI
[14] Duraklı, Z., Nabiyev, V.:
A new approach based on bezier curves to solve path planning problems for mobile robots. J. Comput. Sci. 58 (2022), 101542.
DOI
[15] Elhoseny, M., Tharwat, A., Hassanien, A. E.:
Bezier curve based path planning in a dynamic field using modified genetic algorithm. J. Comput. Sci. 25 (2018), 339-358.
DOI 10.1016/j.jocs.2017.08.004
[16] Feng, S., Zhang, S., Xu, M., Deng, G.:
Parallel navigation for 3-D autonomous vehicles. Kybernetika 59 (2023), 4, 592-611.
DOI |
MR 4660380
[17] Gasilov, N., Dogan, M., Arici, V.:
Two-stage shortest path algorithm for solving optimal obstacle avoidance problem. IETE J. Res. 57 (2011), 3, 278-285.
DOI
[18] Guevara, B. C.: An Overview of the Class of Rapidly-Exploring Random Trees. M.Sc. Thesis, Utrecht University 2018.
[19] Güzel, M. S., Kara, M., Beyazkilic, M. S.:
An adaptive framework for mobile robot navigation. Adaptive Behavior 25 (2017), 1, 30-39.
DOI
[20] Hossain, M. A., Ferdous, I.:
Autonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging technique. In: International Conference on Electrical Information and Communication Technology (EICT), Bangladesh 2014, pp. 1-6.
DOI
[21] Holland, J. H.:
Adaptation in natural and artificial systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, 1992.
MR 0441393
[22] Ismail, A. T., Sheta, A., Al-Weshah, A.:
A mobile robot path planning using genetic algorithm in static environment. J. Computer Sci. 4 (2008), 4, 341-344.
DOI
[23] Kroll, A., Soldan, S.:
Survey results on status, needs and perspectives for using mobile service robots in industrial applications. In: 11th International Conference on Control Automation Robotics and Vision, Singapore 2010, pp. 621-626.
DOI
[24] Kumar, A., Ahmad, G., Shahid, M.:
Portfolio selection strategy: A teaching-learning-based optimization (TLBO) approach. In: Proc. International Joint Conference on Advances in Computational Intelligence, Singapore 2023, pp. 553-564.
DOI
[25] Li, C., Huang, X., Ding, J., Song, K., Lu, S.:
Global path planning based on a bidirectional alternating search A* algorithm for mobile robots. Comput. Industr. Engrg. 168 (2022), 108123.
DOI
[26] Li, J., Chen, Y., Zhao, X., Huang, J.:
An improved DQN path planning algorithm. J. Supercomput. 78 (2022) 616-639.
DOI
[27] Li, X., Zhao, G., Li, B.:
Generating optimal path by level set approach for a mobile robot moving in static/dynamic environments. Appl. Math. Modell. 85 (2020), 210-230.
DOI |
MR 4099345
[28] Li, Y., Huang, Z., Xie, Y.:
Path planning of mobile robot based on improved genetic algorithm. In: 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME), China 2020, pp. 691-695.
MR 3798895
[29] Li, Y., Wei, W., Gao, Y., Wang, D., Fan, Z.:
PQ-RRT*: An improved path planning algorithm for mobile robots. Expert Systems Appl.152 (2020), 113425.
DOI
[30] Liu, J., Yang, J., Liu, H., Tian, X., Gao, M.:
An improved ant colony algorithm for robot path planning. Soft Comput. 21 (2017), 5829-5839.
DOI
[31] Liu, J., Wei, X., Huang, H.:
An improved grey wolf optimization algorithm and its application in path planning. IEEE Access 9 (2021), 121944-121956.
DOI
[32] Low, E. S., Ong, P., Low, C. Y., Omar, R.:
Modified q-learning with distance metric and virtual target on path planning of mobile robot. Expert Systems Appl. 199 (2022), 117191.
DOI
[33] Luan, P. G., Thinh, N. T.:
Hybrid genetic algorithm based smooth global-path planning for a mobile robot. Mechanics Based Design Structures Machines 51 (2023), 1758-1774.
DOI
[34] Luo, S., Zhang, M., Zhuang, Y., Ma, C., Li, Q.:
A survey of path planning of industrial robots based on rapidly exploring random trees. Frontiers Neurorobotics 17 (2023).
DOI
[35] Lyu, D., Chen, Z., Cai, Z., Piao, S.:
Robot path planning by leveraging the graph-encoded floyd algorithm. Future Generation Computer Systems 122 (2021), 204-208.
DOI
[36] Ma, J., Liu, Y., Zang, S., Wang, L.:
Robot path planning based on genetic algorithm fused with continuous Bezier optimization. Comput. Intell. Neurosci. (2020).
DOI
[37] Maoudj, A., Hentout, A.:
Optimal path planning approach based on q-learning algorithm for mobile robots. Appl. Soft Comput. 97 (2020), 106796.
DOI
[38] Miao, C., Chen, G., Yan, C., Wu, Y.:
Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm. Comput. Industr. Engrg. 156 (2021), 107230.
DOI
[39] Mirjalili, S.: Genetic Algorithm, Evolutionary Algorithms and Neural Networks. Springer Cham 2019, 43-55.
[40] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., al., et:
Human-level control through deep reinforcement learning. Nature 518 (2015), 529-533.
DOI
[41] Naji, H. F., Kullu, P., Amrahov, S. Emrah:
An augmented reality-based system with sound effects for teaching english in primary school. Educat. Inform. Technolog. (2023), 1-13.
DOI
[42] Kartli, N., Bostanci, E., Guzel, M. S.:
A new algorithm for the initial feasible solutions of fixed charge transportation problem. In: 7th International Conference on Computer Science and Engineering (UBMK), IEEE, 2022, pp. 82-85.
DOI |
MR 4567841
[43] Kartli, N., Bostanci, E., Guzel, M. S.:
A new algorithm for optimal solution of fixed charge transportation problem. Kybernetika 59 (2023), 1, 45-63.
DOI |
MR 4567841
[44] Rajinikanth, V., Satapathy, S. C., Fernandes, S. L., Nachiappan, S.:
Entropy based segmentation of tumor from brain mr images - a study with teaching learning based optimization. Pattern Recognit. Lett. 94 (2017), 87-95.
DOI
[45] Rao, R. V., Savsani, V. J., Vakharia, D.:
Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Computer-aided Design 43 (2011), 303-315.
DOI |
MR 2847014
[46] Sabiha, A. D., Kamel, M. A., Said, E., Hussein, W. H.:
Path planning algorithm based on teaching-learning-based-optimization for an autonomous vehicle. Communications 24 (2022), C33-C42.
DOI
[47] Sert, S. Y., Ar, Y., Bostanci, G. E.:
Evolutionary approaches for weight optimization in collaborative filtering-based recommender systems. Turkish J. Electr. Engrg. Computer Sci. 27 (2019), 3, 2121-2136.
DOI
[48] Shin, D. H., Ollero, A.:
Mobile robot path planning for fine-grained and smooth path spcification. J. Robotic Syst. 12 (1995), 7, 491-503.
DOI
[49] Tang, H., Fang, B., Liu, R., Li, Y., Guo, S.:
A hybrid teaching and learning-based optimization algorithm for distributed sand casting job-shop scheduling problem. Appl. Soft Comput. 120 (2022), 108694.
DOI
[50] Tu, H., Deng, Y., Li, Q., Song, M., Zheng, X.:
Improved RRT global path planning algorithm based on bridge test. Robotics Autonomous Systems 171 (2024), 104570.
DOI
[51] Wang, J., Chi, W., Li, C., Wang, C., Meng, M. Q. H.:
Neural RRT*: Learning-based optimal path planning. IEEE Trans. Automat. Sci. Engrg. 17 (2020), 1748-1758.
DOI
[52] Wang, W., Li, J., Bai, Z., Wei, Z., Peng, J.:
Towards optimization of path planning: An RRT*-ACO algorithm. IEEE Access (2024).
DOI
[53] Wu, Z., Fu, W., Xue, R., Wang, W.:
A novel global path planning method for mobile robots based on teaching-learning-based optimization. Information 7 (2016), 39.
DOI
[54] Xu, L., Cao, M., Song, B.:
A new approach to smooth path planning of mobile robot based on quartic bezier transition curve and improved pso algorithm. Neurocomputing 473 (2022), 98-106.
DOI
[55] Yildirim, H. B., Kullu, K., Amrahov, S. Emrah:
A graph model and a three-stage algorithm to aid the physically disabled with navigation. Universal Access Inform. Soc. (2023), 1-11.
DOI
[56] Yuan, X., Yuan, X., Wang, X.:
Path planning for mobile robot based on improved bat algorithm. Sensors 21 (2021), 4389.
DOI
[57] Zhang, L., Min, H., Wei, H., Huang, H.: Global path planning for mobile robot based on A* algorithm and genetic algorithm. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), China 2012, pp. 1795-1799.
[58] Zhang, T. W., Xu, G. H., Zhan, X. S., Han, T.:
A new hybrid algorithm for path planning of mobile robot. J. Supercomput. 78 (2022), 4158-4181.
DOI
[59] Zhang, Y., Jin, Z., Chen, Y.:
Hybrid teaching-learning-based optimization and neural network algorithm for engineering design optimization problems. Knowledge-Based Systems 187 (2020), 104836.
DOI
[60] Zhang, Z., He, R., Yang, K.:
A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm. Adv. Manufactur. 10 (2022), 114-130.
DOI