Previous |  Up |  Next

Article

Title: A note on average behaviour of the Fourier coefficients of $j$\lowercase {th} symmetric power $L$-function over certain sparse sequence of positive integers (English)
Author: Wang, Youjun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 2
Year: 2024
Pages: 623-636
Summary lang: English
.
Category: math
.
Summary: Let $j\geq 2$ be a given integer. Let $H_{k}^{*}$ be the set of all normalized primitive holomorphic cusp forms of even integral weight $k\geq 2$ for the full modulo group ${\rm SL}(2,\mathbb {Z})$. For $f\in H_{k}^{*}$, denote by $\lambda _{{\rm sym}^{j}f}(n)$ the $n$th normalized Fourier coefficient of $j$th symmetric power $L$-function ($L(s, {\rm sym}^{j}f)$) attached to $f$. We are interested in the average behaviour of the sum $$ \sum _{n=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}+a_{5}^{2}+a_{6}^{2}\leq x \atop (a_{1},a_{2},a_{3},a_{4},a_{5},a_{6})\in \mathbb {Z}^{ 6}} \lambda _{{\rm sym}^{j}f}^{2}(n), $$ where $x$ is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023). (English)
Keyword: cusp form
Keyword: Fourier coefficient
Keyword: symmetric power $L$-function
MSC: 11F11
MSC: 11F30
MSC: 11F66
idZBL: Zbl 07893403
idMR: MR4764544
DOI: 10.21136/CMJ.2024.0038-24
.
Date available: 2024-07-10T14:59:13Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152462
.
Reference: [1] Bourgain, J.: Decoupling, exponential sums and the Riemann zeta function.J. Am. Math. Soc. 30 (2017), 205-224. Zbl 1352.11065, MR 3556291, 10.1090/jams/860
Reference: [2] Deligne, P.: La conjecture de Weil. I.Usp. Mat. Nauk 30 (1975), 159-190 Russian. Zbl 0314.14007, MR 0387282
Reference: [3] Fomenko, O. M.: Identities involving the coefficients of automorphic $L$-functions.Zap. Nauchn. Semin. POMI 314 (2004), 247-256 Russian. Zbl 1094.11018, MR 2119744, 10.1007/s10958-006-0086-x
Reference: [4] Fomenko, O. M.: Mean value theorems for automorphic $L$-functions.Algebra Anal. 19 (2007), 246-264 Russian. Zbl 1206.11061, MR 2381948, 10.1090/S1061-0022-08-01024-8
Reference: [5] Good, A.: The square mean of Dirichlet series associated with cusp forms.Mathematika 29 (1982), 278-295. Zbl 0497.10016, MR 0696884, 10.1112/S0025579300012377
Reference: [6] Hua, G.: The average behaviour of Hecke eigenvalues over certain sparse sequence of positive integers.Res. Number Theory 8 (2022), Article ID 95, 20 pages. Zbl 1497.11101, MR 4500287, 10.1007/s40993-022-00403-z
Reference: [7] Huang, J., Liu, H., Zhang, D.: Power moments of automorphic $L$-functions related to Maass forms for SL$_3(\Bbb{Z})$.Open Math. 19 (2021), 1007-1017. Zbl 1483.11099, MR 4306782, 10.1515/math-2021-0076
Reference: [8] Ivić, A.: The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications.John Wiley & Sons, New York (1985). Zbl 0556.10026, MR 792089
Reference: [9] Jiang, Y., Lü, G.: On the higher mean over arithmetic progressions of Fourier coefficients of cusp forms.Acta Arith. 166 (2014), 231-252. Zbl 1323.11023, MR 3283621, 10.4064/aa166-3-2
Reference: [10] Lau, Y.-K., Lü, G.: Sums of Fourier coefficients of cusp forms.Q. J. Math. 62 (2011), 687-716. Zbl 1269.11044, MR 2825478, 10.1093/qmath/haq012
Reference: [11] Lin, Y., Nunes, R., Qi, Z.: Strong subconvexity for self-dual GL3 $L$-functions.Int. Math. Res. Not. 2023 (2023), 11453-11470. Zbl 07711446, MR 4609788, 10.1093/imrn/rnac153
Reference: [12] Liu, J., Ye, Y.: Perron's formula and the prime number theorem for automorphic $L$-functions.Pure Appl. Math. Q. 3 (2007), 481-497. Zbl 1246.11152, MR 2340051, 10.4310/PAMQ.2007.v3.n2.a4
Reference: [13] Sharma, A., Sankaranarayanan, A.: Discrete mean square of the coefficients of symmetric square $L$-functions on certain sequence of positive numbers.Res. Number Theory 8 (2022), Article ID 19, 13 pages. Zbl 1498.11177, MR 4392068, 10.1007/s40993-022-00319-8
Reference: [14] Sharma, A., Sankaranarayanan, A.: On the average behavior of the Fourier coefficients of $j$th symmetric power $L$-function over certain sequences of positive integers.Czech. Math. J. 73 (2023), 885-901. Zbl 07729543, MR 4632863, 10.21136/CMJ.2023.0348-22
Reference: [15] Tang, H.: Estimates for the Fourier coefficients of symmetric square $L$-functions.Arch. Math. 100 (2013), 123-130. Zbl 1287.11061, MR 3020126, 10.1007/s00013-013-0481-8
Reference: [16] Tang, H., Wu, J.: Fourier coefficients of symmetric power $L$-functions.J. Number Theory 167 (2016), 147-160. Zbl 1417.11050, MR 3504040, 10.1016/j.jnt.2016.03.005
Reference: [17] Zhai, S.: Average behavior of Fourier coefficients of cusp forms over sum of two squares.J. Number Theory 133 (2013), 3862-3876. Zbl 1295.11041, MR 3084303, 10.1016/j.jnt.2013.05.013
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo