Previous |  Up |  Next

Article

Title: Images of locally nilpotent derivations of bivariate polynomial algebras over a domain (English)
Author: Sun, Xiaosong
Author: Wang, Beini
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 2
Year: 2024
Pages: 599-610
Summary lang: English
.
Category: math
.
Summary: We study the LND conjecture concerning the images of locally nilpotent derivations, which arose from the Jacobian conjecture. Let $R$ be a domain containing a field of characteristic zero. We prove that, when $R$ is a one-dimensional unique factorization domain, the image of any locally nilpotent $R$-derivation of the bivariate polynomial algebra $R[x,y]$ is a Mathieu-Zhao subspace. Moreover, we prove that, when $R$ is a Dedekind domain, the image of a locally nilpotent $R$-derivation of $R[x,y]$ with some additional conditions is a Mathieu-Zhao subspace. (English)
Keyword: locally nilpotent derivation
Keyword: Jacobian conjecture
Keyword: LND conjecture
Keyword: Mathieu-Zhao subspace
MSC: 13N15
MSC: 14R10
idZBL: Zbl 07893401
idMR: MR4764542
DOI: 10.21136/CMJ.2024.0008-24
.
Date available: 2024-07-10T14:58:03Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152460
.
Reference: [1] Adjamagbo, P. K., Essen, A. van den: A proof of the equivalence of the Dixmier, Jacobian and Poisson conjectures.Acta Math. Vietnam. 32 (2007), 205-214. Zbl 1137.14046, MR 2368008
Reference: [2] Atiyah, M. F., Macdonald, I. G.: Introduction to Commutative Algebra.Addison-Wesley, Reading (1969). Zbl 0175.03601, MR 0242802, 10.1201/9780429493621
Reference: [3] Bass, H., Connel, E. H., Wright, D.: The Jacobian conjecture: Reduction of degree and formal expansion of the inverse.Bull. Am. Math. Soc., New Ser. 7 (1982), 287-330. Zbl 0539.13012, MR 0663785, 10.1090/S0273-0979-1982-15032-7
Reference: [4] Belov-Kanel, A., Kontsevich, M.: The Jacobian conjecture is stably equivalent to the Dixmier conjecture.Mosc. Math. J. 7 (2007), 209-218. Zbl 1128.16014, MR 2337879, 10.17323/1609-4514-2007-7-2-209-218
Reference: [5] Bhatwadekar, S., Dutta, A. K.: Kernel of locally nilpotent $R$-derivations of $R[X,Y]$.Trans. Am. Math. Soc. 349 (1997), 3303-3319. Zbl 0883.13006, MR 1422595, 10.1090/S0002-9947-97-01946-6
Reference: [6] Francoise, J. P., Pakovich, F., Yomdin, Y., Zhao, W.: Moment vanishing problem and positivity: Some examples.Bull. Sci. Math. 135 (2011), 10-32. Zbl 1217.44008, MR 2764951, 10.1016/j.bulsci.2010.06.002
Reference: [7] Freudenburg, G.: Algebraic Theory of Locally Nilpotent Derivations.Encyclopaedia of Mathematical Sciences 136. Invariant Theory and Algebraic Transformation Groups 7. Springer, Berlin (2017). Zbl 1391.13001, MR 3700208, 10.1007/978-3-662-55350-3
Reference: [8] Liu, D., Sun, X.: The factorial conjecture and images of locally nilpotent derivations.Bull. Aust. Math. Soc. 101 (2020), 71-79. Zbl 1430.14113, MR 4052910, 10.1017/S0004972719000546
Reference: [9] Mathieu, O.: Some conjectures about invariant theory and their applications.Algèbre noncommutative, groupes quantiques et invariants Séminaires et Congrès 2. Société Mathématique de France, Paris (1997), 263-279. Zbl 0889.22008, MR 1601155
Reference: [10] Shestakov, I. P., Umirbaev, U. U.: Poisson brackets and two-generated subalgebras of rings of polynomials.J. Am. Math. Soc. 17 (2004), 181-196. Zbl 1044.17014, MR 2015333, 10.1090/S0894-0347-03-00438-7
Reference: [11] Sun, X.: Images of derivations of polynomial algebras with divergence zero.J. Algebra 492 (2017), 414-418. Zbl 1386.14208, MR 3709158, 10.1016/j.jalgebra.2017.09.020
Reference: [12] Sun, X., Liu, D.: Images of locally nilpotent derivations of polynomial algebras in three variables.J. Algebra 569 (2021), 401-415. Zbl 1451.14172, MR 4187241, 10.1016/j.jalgebra.2020.10.025
Reference: [13] Sun, X., Wang, B.: On the LND conjecture.Bull. Aust. Math. Soc. 108 (2023), 412-421. Zbl 07764668, MR 4665220, 10.1017/S000497272300059X
Reference: [14] Tsuchimoto, Y.: Endomorphisms of Weyl algebra and $p$-curvatures.Osaka J. Math. 42 (2005), 435-452. Zbl 1105.16024, MR 2147727
Reference: [15] Essen, A. van den: Polynomial Automorphisms and the Jacobian Conjecture.Progress in Mathematics 190. Birkhäuser, Basel (2000). Zbl 0962.14037, MR 1790619, 10.1007/978-3-0348-8440-2
Reference: [16] Essen, A. van den, Sun, X.: Monomial preserving derivations and Mathieu-Zhao subspaces.J. Pure Appl. Algebra 222 (2018), 3219-3223. Zbl 1454.13046, MR 3795641, 10.1016/j.jpaa.2017.12.003
Reference: [17] Essen, A. van den, Willems, R., Zhao, W.: Some results on the vanishing conjecture of differential operators with constant coefficients.J. Pure Appl. Algebra 219 (2015), 3847-3861. Zbl 1317.33007, MR 3335985, 10.1016/j.jpaa.2014.12.024
Reference: [18] Essen, A. van den, Wright, D., Zhao, W.: Images of locally finite derivations of polynomial algebras in two variables.J. Pure Appl. Algebra 215 (2011), 2130-2134. Zbl 1229.13022, MR 2786603, 10.1016/j.jpaa.2010.12.002
Reference: [19] Essen, A. van den, Wright, D., Zhao, W.: On the image conjecture.J. Algebra 340 (2011), 211-224. Zbl 1235.14057, MR 2813570, 10.1016/j.jalgebra.2011.04.036
Reference: [20] Wright, D.: The Jacobian conjecture as a problem in combinatorics.Affine Algebraic Geometry Osaka University Press, Osaka (2007), 483-503. Zbl 1129.14087, MR 2330486
Reference: [21] Zhao, W.: Generalization of the image conjecture and the Mathieu conjecture.J. Pure Appl. Algebra 214 (2010), 1200-1216. Zbl 1205.33017, MR 2586998, 10.1016/j.jpaa.2009.10.007
Reference: [22] Zhao, W.: Images of commuting differential operators of order one with constant leading coefficients.J. Algebra 324 (2010), 231-247. Zbl 1197.14064, MR 2651354, 10.1016/j.jalgebra.2010.04.022
Reference: [23] Zhao, W.: Mathieu subspaces of associative algebras.J. Algebra 350 (2012), 245-272. Zbl 1255.16018, MR 2859886, 10.1016/j.jalgebra.2011.09.036
Reference: [24] Zhao, W.: Some open problems on locally finite or locally nilpotent derivations and $\Cal{E}$-derivations.Commun. Contemp. Math. 20 (2018), Article ID 1750056, 25 pages. Zbl 1476.16004, MR 3810636, 10.1142/S0219199717500560
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo