Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
prime ring; involution; generalized $(m, n)$-Jordan $*$-centralizer
Summary:
Let $\mathcal {A}$ be a noncommutative prime ring equipped with an involution `$*$', and let $\mathcal {Q}_{ms}(\mathcal {A})$ be the maximal symmetric ring of quotients of $\mathcal {A}$. Consider the additive maps $\mathcal {H}$ and $\mathcal {T} \colon \mathcal {A}\to \mathcal {Q}_{ms}(\mathcal {A})$. We prove the following under some inevitable torsion restrictions. (a) If $m$ and $n$ are fixed positive integers such that $(m+n)\mathcal {T}(a^2)=m\mathcal {T}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$ and $(m+n)\mathcal {H}(a^2)=m\mathcal {H}(a)a^*+na\mathcal {T}(a)$ for all $a\in \mathcal {A}$, then $\mathcal {H}=0$. (b) If $\mathcal {T}(aba)=a\mathcal {T}(b)a^*$ for all $a, b\in \mathcal {A}$, then $\mathcal {T}=0$. Furthermore, we characterize Jordan left $\tau $-centralizers in semiprime rings admitting an anti-automorphism $\tau $. As applications, we find the structure of generalized Jordan $*$-derivations in prime rings and generalize as well as improve all the results of A. Abbasi, C. Abdioglu, S. Ali, M. R. Mozumder (2022).
References:
[1] Abbasi, A., Abdioglu, C., Ali, S., Mozumder, M. R.: A characterization of Jordan left *-centralizers via skew Lie and Jordan products. Bull. Iran. Math. Soc. 48 (2022), 2765-2778. DOI 10.1007/s41980-021-00665-w | MR 4487734 | Zbl 1517.16034
[2] Beidar, K. I., III, W. S. Martindale: On functional identities in prime rings with involution. J. Algebra 203 (1998), 491-532. DOI 10.1006/jabr.1997.7285 | MR 1622795 | Zbl 0904.16012
[3] Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V.: Rings with Generalized Identities. Pure and Applied Mathematics 196. Marcel Dekker, New York (1996). MR 1368853 | Zbl 0847.16001
[4] Bennis, D., Dhara, B., Fahid, B.: More on the generalized $(m,n)$-Jordan derivations and centralizers on certain semiprime rings. Bull. Iran. Math. Soc. 47 (2021), 217-224. DOI 10.1007/s41980-020-00377-7 | MR 4215874 | Zbl 1467.16021
[5] Brešar, M.: Functional identities and rings of quotients. Algebr. Represent. Theory 19 (2016), 1437-1450. DOI 10.1007/s10468-016-9625-4 | MR 3574001 | Zbl 1361.16014
[6] Brešar, M., Chebotar, M. A., III, W. S. Martindale: Functional Identities. Frontiers in Mathematics. Birkhäuser, Basel (2007). DOI 10.1007/978-3-7643-7796-0 | MR 2332350 | Zbl 1132.16001
[7] Fošner, A.: A note on generalized $(m,n)$-Jordan centralizers. Demonstr. Math. 46 (2013), 254-262. DOI 10.1515/dema-2013-0456 | MR 3089114 | Zbl 1293.16033
[8] Herstein, I. N.: Jordan derivations of prime rings. Proc. Am. Math. Soc. 8 (1957), 1104-1110. DOI 10.1090/S0002-9939-1957-0095864-2 | MR 0095864 | Zbl 0216.07202
[9] Herstein, I. N.: Topics in Ring Theory. University of Chicago Press, Chicago (1969). MR 0271135 | Zbl 0232.16001
[10] Kosi-Ulbl, I., Vukman, J.: On $(m,n)$-Jordan centralizers of semiprime rings. Publ. Math. Debr. 89 (2016), 223-231. DOI 10.5486/PMD.2016.7490 | MR 3529272 | Zbl 1389.16079
[11] Lanning, S.: The maximal symmetric ring of quotients. J. Algebra 179 (1996), 47-91. DOI 10.1006/jabr.1996.0003 | MR 1367841 | Zbl 0839.16020
[12] Lee, T.-K., Lin, J.-H.: Jordan derivations of prime rings with characteristic two. Linear Algebra Appl. 462 (2014), 1-15. DOI 10.1016/j.laa.2014.08.006 | MR 3255518 | Zbl 1300.16044
[13] Lee, T.-K., Lin, J.-H.: Jordan $\tau$-derivations of prime rings. Commun. Algebra 43 (2015), 5195-5204. DOI 10.1080/00927872.2014.974103 | MR 3395699 | Zbl 1327.16033
[14] Lee, T.-K., Wong, T.-L.: Right centralizers of semiprime rings. Commun. Algebra 42 (2014), 2923-2927. DOI 10.1080/00927872.2012.761711 | MR 3178052 | Zbl 1293.16034
[15] Lee, T.-K., Wong, T.-L., Zhou, Y.: The structure of Jordan *-derivations of prime rings. Linear Multilinear Algebra 63 (2015), 411-422. DOI 10.1080/03081087.2013.869593 | MR 3273764 | Zbl 1312.16046
[16] Lee, T.-K., Zhou, Y.: Jordan *-derivations of prime rings. J. Algebra Appl. 13 (2014), Article ID 1350126, 9 pages. DOI 10.1142/S0219498813501260 | MR 3153861 | Zbl 1292.16037
[17] Lin, J.-H.: Jordan $\tau$-derivations of prime GPI-rings. Taiwanese J. Math. 24 (2020), 1091-1105. DOI 10.11650/tjm/191105 | MR 4152657 | Zbl 1467.16043
[18] Qi, X., Zhang, Y.: $k$-skew Lie products on prime rings with involution. Commun. Algebra 46 (2018), 1001-1010. DOI 10.1080/00927872.2017.1335744 | MR 3780213 | Zbl 1441.16047
[19] Rowen, L.: Some results on the center of a ring with polynomial identity. Bull. Am. Math. Soc. 79 (1973), 219-223. DOI 10.1090/S0002-9904-1973-13162-3 | MR 0309996 | Zbl 0252.16007
[20] Šemrl, P.: Quadratic functionals and Jordan *-derivations. Stud. Math. 97 (1991), 157-165. DOI 10.4064/sm-97-3-157-165 | MR 1100685 | Zbl 0761.46047
[21] Šemrl, P.: Jordan *-derivations on standard operator algebras. Proc. Am. Math. Soc. 120 (1994), 515-518. DOI 10.1090/S0002-9939-1994-1186136-6 | MR 1186136 | Zbl 0816.47040
[22] Siddeeque, M. A., Khan, N., Abdullah, A. A.: Weak Jordan *-derivations of prime rings. J. Algebra Appl. 22 (2023), Article ID 2350105, 34 pages. DOI 10.1142/S0219498823501050 | MR 4556321 | Zbl 07667259
[23] Siddeeque, M. A., Shikeh, A. H.: On the characterization of generalized $(m,n)$-Jordan *-derivations in prime rings. Georgian Math. J. 31 (2024), 139-148. DOI 10.1515/gmj-2023-2060 | MR 4698476 | Zbl 07803155
[24] Siddeeque, M. A., Shikeh, A. H.: A note on certain additive maps in prime rings with involution. (to appear) in Beitr. Algebra Geom. DOI 10.1007/s13366-023-00694-y | MR 4740676
[25] Vukman, J.: An identity related to centralizers in semiprime rings. Commentat. Math. Univ. Carol. 40 (1999), 447-456. MR 1732490 | Zbl 1014.16021
[26] Vukman, J.: Centralizers on semiprime rings. Commentat. Math. Univ. Carol. 42 (2001), 237-245. MR 1832143 | Zbl 1057.16029
[27] Vukman, J.: On $(m,n)$-Jordan centralizers in rings and algebras. Glas. Math., III. Ser. 45 (2010), 43-53. DOI 10.3336/gm.45.1.04 | MR 2646436 | Zbl 1200.16051
[28] Vukman, J., Fošner, M.: A characterization of two-sided centralizers on prime rings. Taiwanese J. Math. 11 (2007), 1431-1441. DOI 10.11650/twjm/1500404876 | MR 2368661 | Zbl 1148.16033
[29] Vukman, J., Kosi-Ulbl, I.: On centralizers of semiprime rings. Aequationes Math. 66 (2003), 277-283. DOI 10.1007/s00010-003-2681-y | MR 2028564 | Zbl 1073.16018
[30] Zalar, B.: On centralizers of semiprime rings. Commentat. Math. Univ. Carol. 32 (1991), 609-614. MR 1159807 | Zbl 0746.16011
Partner of
EuDML logo