Previous |  Up |  Next

Article

Title: On the irreducible factors of a polynomial over a valued field (English)
Author: Jakhar, Anuj
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 2
Year: 2024
Pages: 367-375
Summary lang: English
.
Category: math
.
Summary: We explicitly provide numbers $d$, $e$ such that each irreducible factor of a polynomial $f(x)$ with integer coefficients has a degree greater than or equal to $d$ and $f(x)$ can have at most $e$ irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field. (English)
Keyword: irreducibility
Keyword: Eisenstein criterion
Keyword: polynomial
MSC: 11R09
MSC: 12E05
MSC: 12J10
idZBL: Zbl 07893386
idMR: MR4764527
DOI: 10.21136/CMJ.2024.0451-22
.
Date available: 2024-07-10T14:49:11Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152445
.
Reference: [1] Alexandru, V., Popescu, N., Zaharescu, A.: A theorem of characterization of residual transcendental extension of a valuation.J. Math. Kyoto Univ. 28 (1988), 579-592. Zbl 0689.12017, MR 0981094, 10.1215/kjm/1250520346
Reference: [2] Dumas, G.: Sur quelques cas d'irréductibilité des polynomes á coefficients rationnels.J. Math. Pures Appl. 6 (1906), 191-258 French \99999JFM99999 37.0096.01.
Reference: [3] Eisenstein, G.: Über die Irreductibilität und einige andere Eigenschaften der Gleichungen, von welcher die Theilung der ganzen Lemniscate abhängt.J. Reine Angew. Math. 39 (1850), 160-179 German. MR 1578663, 10.1515/crll.1850.39.160
Reference: [4] Engler, A. J., Prestel, A.: Valued Fields.Springer Monographs in Mathematics. Springer, New York (2005). Zbl 1128.12009, MR 2183496, 10.1007/3-540-30035-X
Reference: [5] Girstmair, K.: On an irreducibility criterion of M. Ram Murty.Am. Math. Mon. 112 (2005), 269-270. Zbl 1077.11017, MR 2125390, 10.1080/00029890.2005.11920194
Reference: [6] Gouvêa, F. Q.: $p$-adic Numbers: An Introduction.Springer, New York (2003). Zbl 1436.11001, MR 4175370, 10.1007/978-3-030-47295-5
Reference: [7] Jakhar, A.: On the factors of a polynomial.Bull. Lond. Math. Soc. 52 (2020), 158-160. Zbl 1455.11144, MR 4072040, 10.1112/blms.12315
Reference: [8] Jakhar, A.: On the irreducible factors of a polynomial.Proc. Am. Math. Soc. 148 (2020), 1429-1437. Zbl 1446.12004, MR 4069182, 10.1090/proc/14856
Reference: [9] Jakhar, A., Srinivas, K.: On the irreducible factors of a polynomial. II.J. Algebra 556 (2020), 649-655. Zbl 1443.12002, MR 4088446, 10.1016/j.jalgebra.2020.02.045
Reference: [10] Jhorar, B., Khanduja, S. K.: Reformulation of Hensel's lemma and extension of a theorem of Ore.Manuscr. Math. 151 (2016), 223-241. Zbl 1351.12002, MR 3532244, 10.1007/s00229-016-0829-z
Reference: [11] Khanduja, S. K., Kumar, M.: Prolongations of valuations to finite extensions.Manuscr. Math. 131 (2010), 323-334. Zbl 1216.12007, MR 2592083, 10.1007/s00229-009-0320-1
Reference: [12] Murty, M. Ram: Prime numbers and irreducible polynomials.Am. Math. Mon. 109 (2002), 452-458. Zbl 1053.11020, MR 1901498, 10.1080/00029890.2002.11919872
Reference: [13] Schönemann, T.: Von denjenigen Moduln, welche Potenzen von Primzahlen sind.J. Reine Angew. Math. 32 (1846), 93-105 German. MR 1578516, 10.1515/crll.1846.32.93
Reference: [14] Weintraub, S. H.: A mild generalization of Eisenstein's criterion.Proc. Am. Math. Soc. 141 (2013), 1159-1160. Zbl 1271.12001, MR 3008863, 10.1090/S0002-9939-2012-10880-9
Reference: [15] Weintraub, S. H.: A family of tests for irreducibility of polynomials.Proc. Am. Math. Soc. 144 (2016), 3331-3332. Zbl 1390.12001, MR 3503701, 10.1090/proc/13033
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo