Previous |  Up |  Next

Article

Title: Two-point oscillatory solutions to system with relay hysteresis and nonperiodic external disturbance (English)
Author: Kamachkin, Alexander M.
Author: Potapov, Dmitriy K.
Author: Yevstafyeva, Victoria V.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 3
Year: 2024
Pages: 395-414
Summary lang: English
.
Category: math
.
Summary: We study an $n$-dimensional system of ordinary differential equations with a constant matrix, a relay-type nonlinearity, and an external disturbance in the right-hand side. We consider a nonideal relay characteristic. The external disturbance is described by the product of an exponential function and a sine function with an initial phase as a parameter. We assume the matrix of the linear part and the vector at the relay characteristic such that, by a nonsingular transformation, the system is reduced to the form with the diagonal matrix and the vector being opposite to the unit vector. We establish a necessary and sufficient condition for the existence of two-point oscillatory solutions, i.e., the solutions with two fixed points on the hyperplanes of the relay switching in phase space. Also, we give the sufficient conditions under which such solutions do not exist. We provide a supporting example, which demonstrates how to apply the obtained results. (English)
Keyword: ODE system
Keyword: relay hysteresis
Keyword: nonperiodic external disturbance
Keyword: two-point oscillatory solution
MSC: 34C15
MSC: 34C55
MSC: 93C15
MSC: 93C73
idZBL: Zbl 07893342
idMR: MR4747499
DOI: 10.21136/AM.2024.0152-22
.
Date available: 2024-05-17T07:49:21Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152356
.
Reference: [1] Andronov, A. A., Vitt, A. A., Khaikin, S. E.: Theory of Oscillators.International Series of Monographs in Physics 4. Pergamon Press, Oxford (1966). Zbl 0188.56304, MR 0198734, 10.1016/C2013-0-06631-5
Reference: [2] Arnold, M., Begun, N., Gurevich, P., Kwame, E., Lamba, H., Rachinskii, D.: Dynamics of discrete time systems with a hysteresis stop operator.SIAM J. Appl. Dyn. Syst. 16 (2017), 91-119. Zbl 1361.37076, MR 3592068, 10.1137/16M10735
Reference: [3] ström, K. J. Å: Oscillations in systems with relay feedback.Adaptive Control, Filtering, and Signal Processing The IMA Volumes in Mathematics and Its Applications 74. Springer, New York (1995), 1-25. Zbl 0829.93032, MR 1351012, 10.1007/978-1-4419-8568-2_1
Reference: [4] Balanov, Z., Kravetc, P., Krawcewicz, W., Rachinskii, D.: Equivariant degree method for analysis of Hopf bifurcation of relative periodic solutions: Case study of a ring of oscillators.J. Differ. Equations 265 (2018), 4530-4574. Zbl 1397.34121, MR 3843308, 10.1016/j.jde.2018.06.014
Reference: [5] Bertotti, G., (Eds.), I. D. Mayergoyz: The Science of Hysteresis. Vol. I. Mathematical Modeling and Applications.Elsevier/Academic Press, Amsterdam (2006). Zbl 1117.34045, MR 2307929
Reference: [6] Botkin, N. D., Brokate, M., Behi-Gornostaeva, E. G. El: One-phase flow in porous media with hysteresis.Phys. B 486 (2016), 183-186. MR 3797613, 10.1016/j.physb.2015.08.039
Reference: [7] Brokate, M., Krejčí, P.: Weak differentiability of scalar hysteresis operators.Discrete Contin. Dyn. Syst. 35 (2015), 2405-2421. Zbl 1338.47118, MR 3299005, 10.3934/dcds.2015.35.2405
Reference: [8] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions.Applied Mathematical Sciences 121. Springer, New York (1996). Zbl 0951.74002, MR 1411908, 10.1007/978-1-4612-4048-8
Reference: [9] Burns, R. S.: Advanced Control Engineering.Butterworth-Heinemann, Oxford (2001). 10.1016/B978-0-7506-5100-4.X5000-1
Reference: [10] Fang, L., Wang, J., Zhang, Q.: Identification of extended Hammerstein systems with hysteresis-type input nonlinearities described by Preisach model.Nonlinear Dyn. 79 (2015), 1257-1273. Zbl 1345.93046, MR 3302768, 10.1007/s11071-014-1740-3
Reference: [11] Fursov, A. S., Mitrev, R. P., Krylov, P. A., Todorov, T. S.: On the existence of a periodic mode in a nonlinear system.Differ. Equ. 57 (2021), 1076-1087. Zbl 1471.93133, MR 4316860, 10.1134/S0012266121080127
Reference: [12] Fursov, A. S., Todorov, T. S., Krylov, P. A., Mitrev, R. P.: On the existence of oscillatory modes in a nonlinear system with hystereses.Differ. Equ. 56 (2020), 1081-1099. Zbl 1451.34057, MR 4147119, 10.1134/S0012266120080108
Reference: [13] Johansson, K. H., Rantzer, A., Åström, K. J.: Fast switches in relay feedback systems.Automatica 35 (1999), 539-552. Zbl 0934.93033, 10.1016/S0005-1098(98)00160-5
Reference: [14] Kamachkin, A. M., Chitrov, G. M., Shamberov, V. N.: Normal matrix forms to decomposition and control problems for multidimensional systems.Vestn. St.-Peterbg. Univ. Prikl. Mat. Inform. Protsessy Upr. 13 (2017), 417-430 Russian. MR 3750121, 10.21638/11701/spbu10.2017.408
Reference: [15] Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V.: Existence of periodic solutions to automatic control system with relay nonlinearity and sinusoidal external influence.Int. J. Robust Nonlinear Control 27 (2017), 204-211. Zbl 1353.93055, MR 3594931, 10.1002/rnc.3567
Reference: [16] Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V.: Existence of subharmonic solutions to a hysteresis system with sinusoidal external influence.Electron. J. Differ. Equ. 2017 (2017), Article ID 140, 10 pages. Zbl 1370.34066, MR 3665602
Reference: [17] Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V.: On uniqueness and properties of periodic solution of second-order nonautonomous system with discontinuous nonlinearity.J. Dyn. Control Syst. 23 (2017), 825-837. Zbl 1381.34083, MR 3688896, 10.1007/s10883-017-9368-5
Reference: [18] Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V.: Dynamics and synchronization in feedback cyclic structures with hysteresis oscillators.Vestn. St.-Peterbg. Univ. Prikl. Mat. Inform. Protsessy Upr. 16 (2020), 186-199 Russian. MR 4160031, 10.21638/11701/spbu10.2020.210
Reference: [19] Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V.: Existence of periodic modes in automatic control system with a three-position relay.Int. J. Control 93 (2020), 763-770. Zbl 1435.34048, MR 4077763, 10.1080/00207179.2018.1562221
Reference: [20] Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V.: Method for the transformation of complex automatic control systems to integrable form.Vestn. St.-Peterbg. Univ. Prikl. Mat. Inform. Protsessy Upr. 17 (2021), 196-212 Russian. MR 4311880, 10.21638/11701/spbu10.2021.209
Reference: [21] Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V.: Continuous dependence on parameters and boundedness of solutions to a hysteresis system.Appl. Math., Praha 67 (2022), 65-80. Zbl 07478517, MR 4392405, 10.21136/AM.2021.0085-20
Reference: [22] Kamachkin, A. M., Potapov, D. K., Yevstafyeva, V. V.: Fixed points of a mapping generated by a system of ordinary differential equations with relay hysteresis.Differ. Equ. 58 (2022), 455-467. Zbl 1503.34093, MR 4464618, 10.1134/S0012266122040024
Reference: [23] Krasnosel'skij, M. A., Pokrovskij, A. V.: Systems with Hysteresis.Springer, Berlin (1989). Zbl 0665.47038, MR 0987431, 10.1007/978-3-642-61302-9
Reference: [24] Leonov, G. A., Shumafov, M. M., Teshev, V. A., Aleksandrov, K. D.: Differential equations with hysteresis operators: Existence of solutions, stability, and oscillations.Differ. Equ. 53 (2017), 1764-1816. Zbl 1394.34004, MR 3804280, 10.1134/S0012266117130055
Reference: [25] Macki, J. W., Nistri, P., Zecca, P.: Mathematical models for hysteresis.SIAM Rev. 35 (1993), 94-123. Zbl 0771.34018, MR 1207799, 10.1137/10350
Reference: [26] Mayergoyz, I. D.: Mathematical Models of Hysteresis and Their Applications.Elsevier/Academic Press, Amsterdam (2003). MR 1083150, 10.1016/B978-0-12-480873-7.X5000-2
Reference: [27] McCarthy, S., Rachinskii, D.: Dynamics of systems with Preisach memory near equilibria.Math. Bohem. 139 (2014), 39-73. Zbl 1340.34163, MR 3231429, 10.21136/MB.2014.143636
Reference: [28] Medvedskii, A. L., Meleshenko, P. A., Nesterov, V. A., Reshetova, O. O., Semenov, M. E., Solovyov, A. M.: Unstable oscillating systems with hysteresis: Problems of stabilization and control.J. Comput. Syst. Sci. Int. 59 (2020), 533-556. Zbl 1470.93128, MR 4431725, 10.1134/S1064230720030090
Reference: [29] Paraskevopoulos, P. N.: Modern Control Engineering.Control Engineering (Boca Raton) 10. Marcel Dekker, New York (2001). Zbl 0986.93001, 10.1201/9781315214573
Reference: [30] Pimenov, A., Rachinskii, D.: Homoclinic orbits in a two-patch predator-prey model with Preisach hysteresis operator.Math. Bohem. 139 (2014), 285-298. Zbl 1349.47141, MR 3238840, 10.21136/MB.2014.143855
Reference: [31] Pokrovskij, A. V.: Existence and computation of stable modes in relay systems.Autom. Remote Control 47 (1986), 451-458. Zbl 0604.93050, MR 0848397
Reference: [32] Potapov, D. K., Yevstafyeva, V. V.: Lavrent'ev problem for separated flows with an external perturbation.Electron. J. Differ. Equ. 2013 (2013), Article ID 255, 6 pages. Zbl 1290.35134, MR 3138830
Reference: [33] Rachinskii, D.: Realization of arbitrary hysteresis by a low-dimensional gradient flow.Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 227-243. Zbl 1330.34074, MR 3426841, 10.3934/dcdsb.2016.21.227
Reference: [34] Solovyov, A. M., Semenov, M. E., Meleshenko, P. A., Reshetova, O. O., Popov, M. A., Kabulova, E. G.: Hysteretic nonlinearity and unbounded solutions in oscillating systems.Procedia Eng. 201 (2017), 578-583. 10.1016/j.proeng.2017.09.634
Reference: [35] Tsypkin, Ya. Z.: Relay Control Systems.Cambridge University Press, Cambridge (1984). Zbl 0571.93001, MR 0789077
Reference: [36] Varigonda, S., Georgiou, T. T.: Dynamics of relay relaxation oscillators.IEEE Trans. Autom. Control 46 (2001), 65-77. Zbl 1004.34034, MR 1809466, 10.1109/9.898696
Reference: [37] Vasquez-Beltran, M. A., Jayawardhana, B., Peletier, R.: Recursive algorithm for the control of output remnant of Preisach hysteresis operator.IEEE Control Syst. Lett. 5 (2021), 1061-1066. MR 4211636, 10.1109/LCSYS.2020.3009423
Reference: [38] Visintin, A.: Differential Models of Hysteresis.Applied Mathematical Sciences 111. Springer, Berlin (1994). Zbl 0820.35004, MR 1329094, 10.1007/978-3-662-11557-2
Reference: [39] Visintin, A.: Ten issues about hysteresis.Acta Appl. Math. 132 (2014), 635-647. Zbl 1305.74072, MR 3255072, 10.1007/s10440-014-9936-6
Reference: [40] Visintin, A.: P.D.E.s with hysteresis 30 years later.Discrete Contin. Dyn. Syst., Ser. S 8 (2015), 793-816. Zbl 1304.35357, MR 3356462, 10.3934/dcdss.2015.8.793
Reference: [41] Yevstafyeva, V. V.: On existence conditions for a two-point oscillating periodic solution in an non-autonomous relay system with a Hurwitz matrix.Autom. Remote Control 76 (2015), 977-988. Zbl 1327.93225, MR 3374789, 10.1134/S000511791506003X
Reference: [42] Yevstafyeva, V. V.: Periodic solutions of a system of differential equations with hysteresis nonlinearity in the presence of eigenvalue zero.Ukr. Math. J. 70 (2019), 1252-1263. Zbl 1417.34098, MR 3863943, 10.1007/s11253-018-1566-0
Reference: [43] Yevstafyeva, V. V.: Existence of $T/k$-periodic solutions of a nonlinear nonautonomous system whose matrix has a multiple eigenvalue.Math. Notes 109 (2021), 551-562. Zbl 1472.34081, MR 4236227, 10.1134/S0001434621030238
Reference: [44] Yevstafyeva, V. V.: Existence of two-point oscillatory solutions of a relay nonautonomous system with multiple eigenvalue of a real symmetric matrix.Ukr. Math. J. 73 (2021), 746-757. Zbl 1483.34061, MR 4466489, 10.1007/s11253-021-01957-4
Reference: [45] Yevstafyeva, V. V.: On the existence of two-point oscillatory solutions of a perturbed relay system with hysteresis.Differ. Equ. 57 (2021), 155-164. Zbl 1464.34063, MR 4237004, 10.1134/S001226612102004X
Reference: [46] Yu, C.-C.: Autotuning of PID Controllers: A Relay Feedback Approach.Advances in Industrial Control. Springer, Berlin (1999). Zbl 0962.93004, 10.1007/b137042
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo