Previous |  Up |  Next

Article

Title: Solving inverse nodal problem with frozen argument by using second Chebyshev wavelet method (English)
Author: Wang, Yu Ping
Author: Akbarpoor Kiasary, Shahrbanoo
Author: Yılmaz, Emrah
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 3
Year: 2024
Pages: 339-354
Summary lang: English
.
Category: math
.
Summary: We consider the inverse nodal problem for Sturm-Liouville (S-L) equation with frozen argument. Asymptotic behaviours of eigenfunctions, nodal parameters are represented in two cases and numerical algorithms are produced to solve the given problems. Subsequently, solution of inverse nodal problem is calculated by the second Chebyshev wavelet method (SCW), accuracy and effectiveness of the method are shown in some numerical examples. (English)
Keyword: Sturm-Liouville equation
Keyword: inverse nodal problem
Keyword: Frozen argument
Keyword: nodal parameters
Keyword: SCW method
MSC: 34A55
MSC: 34B99
MSC: 34L40
MSC: 35Q60
MSC: 35R30
idZBL: Zbl 07893339
idMR: MR4747496
DOI: 10.21136/AM.2024.0038-21
.
Date available: 2024-05-17T07:47:01Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152353
.
Reference: [1] Akbarpoor, S., Koyunbakan, H., Dabbaghian, A.: Solving inverse nodal problem with spectral parameter in boundary conditions.Inverse Probl. Sci. Eng. 27 (2019), 1790-1801. Zbl 1461.34031, MR 4009877, 10.1080/17415977.2019.1597871
Reference: [2] Albeverio, S., Hryniv, R. O., Nizhnik, L. P.: Inverse spectral problems for non-local Sturm-Liouville operators.Inverse Probl. 23 (2007), 523-535. Zbl 1121.34014, MR 2309662, 10.1088/0266-5611/23/2/005
Reference: [3] Bondarenko, N. P., Buterin, S. A., Vasiliev, S. V.: An inverse spectral problem for Sturm-Liouville operators with frozen argument.J. Math. Anal. Appl. 472 (2019), 1028-1041. Zbl 1416.34015, MR 3906409, 10.1016/j.jmaa.2018.11.062
Reference: [4] Bondarenko, N. P., Yurko, V. A.: An inverse problem for Sturm-Liouville differential operators with deviating argument.Appl. Math. Lett. 83 (2018), 140-144. Zbl 1489.34105, MR 3795682, 10.1016/j.aml.2018.03.025
Reference: [5] Bondarenko, N. P., Yurko, V. A.: Partial inverse problems for the Sturm-Liouville equation with deviating argument.Math. Methods Appl. Sci. 41 (2018), 8350-8354. Zbl 1469.34034, MR 3891294, 10.1002/mma.5265
Reference: [6] Borg, G.: Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe: Bestimmung der Differentialgleichung durch die Eigenwerte.Acta Math. 78 (1946), 1-96 German. Zbl 0063.00523, MR 0015185, 10.1007/BF02421600
Reference: [7] Browne, P. J., Sleeman, B. D.: Inverse nodal problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions.Inverse Probl. 12 (1996), 377-381. Zbl 0860.34007, MR 1402097, 10.1088/0266-5611/12/4/002
Reference: [8] Buterin, S. A., Kuznetsova, M.: On the inverse problem for Sturm-Liouville-type operators with frozen argument: Rational case.Comput. Appl. Math. 39 (2020), Article ID 5, 15 pages. Zbl 1449.34265, MR 4036537, 10.1007/s40314-019-0972-8
Reference: [9] Buterin, S. A., Pikula, M., Yurko, V. A.: Sturm-Liouville differential operators with deviating argument.Tamkang J. Math. 48 (2017), 61-71. Zbl 1410.34230, MR 3623427, 10.5556/j.tkjm.48.2017.2264
Reference: [10] Buterin, S. A., Shieh, C.-T.: Incomplete inverse spectral and nodal problems for differential pencils.Result. Math. 62 (2012), 167-179. Zbl 1256.34010, MR 2964764, 10.1007/s00025-011-0137-6
Reference: [11] Buterin, S. A., Vasiliev, S. V.: On recovering a Sturm-Liouville-type operator with the frozen argument rationally proportioned to the interval length.J. Inverse Ill-Posed Probl. 27 (2019), 429-438. Zbl 1422.34214, MR 3962691, 10.1515/jiip-2018-0047
Reference: [12] Buterin, S. A., Yurko, V. A.: An inverse spectral problem for Sturm-Liouville operators with a large constant delay.Anal. Math. Phys. 9 (2019), 17-27. Zbl 1423.34087, MR 3933524, 10.1007/s13324-017-0176-6
Reference: [13] Chen, X., Cheng, Y. H., Law, C. K.: Reconstructing potentials from zeros of one eigenfunction.Trans. Am. Math. Soc. 363 (2011), 4831-4851. Zbl 1232.34021, MR 2806693, 10.1090/S0002-9947-2011-05258-X
Reference: [14] Cheng, Y.-H., Law, C. K., Tsay, J.: Remarks on a new inverse nodal problem.J. Math. Anal. Appl. 248 (2000), 145-155. Zbl 0960.34018, MR 1772587, 10.1006/jmaa.2000.6878
Reference: [15] Gulsen, T., Yilmaz, E., Akbarpoor, S.: Numerical investigation of the inverse nodal problem by Chebyshev interpolation method.Thermal Sci. 22 (2018), S123--S136. 10.2298/TSCI170612278G
Reference: [16] Guo, Y., Wei, G.: Inverse problems: Dense nodal subset on an interior subinterval.J. Differ. Equations 255 (2013), 2002-2017. Zbl 1288.34013, MR 3072679, 10.1016/j.jde.2013.06.006
Reference: [17] Hald, O. H., McLaughlin, J. R.: Solutions of inverse nodal problems.Inverse Probl. 5 (1989), 307-347. Zbl 0667.34020, MR 0999065, 10.1088/0266-5611/5/3/008
Reference: [18] Hu, Y.-T., Bondarenko, N. P., Yang, C.-F.: Traces and inverse nodal problem for Sturm-Liouville operators with frozen argument.Appl. Math. Lett. 102 (2020), Article ID 106096, 7 pages. Zbl 1444.34076, MR 4024736, 10.1016/j.aml.2019.106096
Reference: [19] Krall, A. M.: The development of general differential and general differential-boundary systems.Rocky Mt. J. Math. 5 (1975), 493-542. Zbl 0322.34009, MR 0409946, 10.1216/RMJ-1975-5-4-493
Reference: [20] Kuryshova, Y. V.: Inverse spectral problem for integro-differential operators.Math. Notes 81 (2007), 767-777. Zbl 1142.45006, MR 2349102, 10.1134/S0001434607050240
Reference: [21] Law, C. K., Shen, C.-L., Yang, C.-F.: The inverse nodal problem on the smoothness of the potential function.Inverse Probl. 15 (1999), 253-263. Zbl 0921.34028, MR 1675348, 10.1088/0266-5611/15/1/024
Reference: [22] Law, C. K., Yang, C.-F.: Reconstructing the potential function and its derivatives using nodal data.Inverse Probl. 14 (1998), 299-312. Zbl 0901.34023, MR 1619374, 10.1088/0266-5611/14/2/006
Reference: [23] McLaughlin, J. R.: Inverse spectral theory using nodal points as data: A uniqueness result.J. Differ. Equations 73 (1988), 342-362. Zbl 0652.34029, MR 0943946, 10.1016/0022-0396(88)90111-8
Reference: [24] Neamaty, A., Akbarpoor, S.: Numerical solution of inverse nodal problem with an eigenvalue in the boundary condition.Inverse Probl. Sci. Eng. 25 (2017), 978-994. Zbl 1371.65066, MR 3635003, 10.1080/17415977.2016.1209751
Reference: [25] Nizhnik, L.: Inverse nonlocal Sturm-Liouville problem.Inverse Probl. 26 (2010), Article ID 125006, 9 pages. Zbl 1217.34040, MR 2737740, 10.1088/0266-5611/26/12/125006
Reference: [26] Pikula, M.: Determination of a differential operator of Sturm-Liouville type with retarded argument by two spectra.Mat. Vesn. 43 (1991), 159-171 Russian. Zbl 0776.34009, MR 1202169
Reference: [27] Pöschel, J., Trubowitz, E.: Inverse Spectral Theory.Pure and Applied Mathematics 130. Academic Press, Boston (1987). Zbl 0623.34001, MR 0894477, 10.1016/s0079-8169(08)x6138-0
Reference: [28] Rundell, W., Sacks, P. E.: The reconstruction of Sturm-Liouville operators.Inverse Probl. 8 (1992), 457-482. Zbl 0762.34003, MR 1166492, 10.1088/0266-5611/8/3/007
Reference: [29] Shieh, C.-T., Yurko, V. A.: Inverse nodal and inverse spectral problems for discontinuous boundary value problems.J. Math. Anal. Appl. 347 (2008), 266-272. Zbl 1209.34014, MR 2433842, 10.1016/j.jmaa.2008.05.097
Reference: [30] Vladičić, V., Pikula, M.: An inverse problem for Sturm-Liouville-type differential equation with a constant delay.Sarajevo J. Math. 12 (2016), 83-88. Zbl 1424.34264, MR 3511149, 10.5644/SJM.12.1.06
Reference: [31] Wang, Y. P., Lien, K. Y., Shieh, C.-T.: Inverse problems for the boundary value problem with the interior nodal subsets.Appl. Anal. 96 (2017), 1229-1239. Zbl 1410.34064, MR 3627617, 10.1080/00036811.2016.1183770
Reference: [32] Wang, Y. P., Shieh, C.-T., Miao, H. Y.: Reconstruction for Sturm-Liouville equations with a constant delay with twin-dense nodal subsets.Inverse Probl. Sci. Eng. 27 (2019), 608-617. Zbl 1461.34036, MR 3918035, 10.1080/17415977.2018.1489803
Reference: [33] Wang, Y. P., Yurko, V. A.: On the inverse nodal problems for discontinuous Sturm-Liouville operators.J. Differ. Equations 260 (2016), 4086-4109. Zbl 1342.34028, MR 3437580, 10.1016/j.jde.2015.11.004
Reference: [34] Wang, Y. P., Zhang, M., Zhao, W., Wei, X.: Reconstruction for Sturm-Liouville operators with frozen argument for irrational cases.Appl. Math. Lett. 111 (2021), Article ID 106590, 6 pages. Zbl 1524.34183, MR 4119344, 10.1016/j.aml.2020.106590
Reference: [35] Wang, Y., Zhu, L.: SCW method for solving the fractional integro-differential equations with a weakly singular kernel.Appl. Math. Comput. 275 (2016), 72-80. Zbl 1410.65288, MR 3437690, 10.1016/j.amc.2015.11.057
Reference: [36] Wei, X., Miao, H., Ge, C., Zhao, C.: An inverse problem for Sturm-Liouville operators with nodal data on arbitrarily-half intervals.Inverse Probl. Sci. Eng. 29 (2021), 305-317. Zbl 1470.65134, MR 4226240, 10.1080/17415977.2020.1779711
Reference: [37] Yang, C.-F., Yang, X.-P.: Inverse nodal problems for the Sturm-Liouville equation with polynomially dependent on the eigenparameter.Inverse Probl. Sci. Eng. 19 (2011), 951-961. Zbl 1248.34013, MR 2836942, 10.1080/17415977.2011.565874
Reference: [38] Yang, X.-F.: A new inverse nodal problem.J. Differ. Equations 169 (2001), 633-653. Zbl 0977.34021, MR 1808480, 10.1006/jdeq.2000.3911
Reference: [39] lmaz, E. Yı, Koyunbakan, H.: Reconstruction of potential function and its derivatives for Sturm-Liouville problem with eigenvalues in boundary condition.Inverse Probl. Sci. Eng. 18 (2010), 935-944. Zbl 1205.65215, MR 2743231, 10.1080/17415977.2010.492514
Reference: [40] Yurko, V. A.: An inverse spectral problem for integro-differential operators.Far East J. Math. Sci. (FJMS) 92 (2014), 247-261. Zbl 1328.47051, MR 3535366
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo