[5] Bai, Z.-Z.:
Quasi-HSS iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts. Numer. Linear Algebra Appl. 25 (2018), Article ID e2116, 19 pages.
DOI 10.1002/nla.2116 |
MR 3826931 |
Zbl 1513.65063
[13] Bertaccini, D.:
Efficient preconditioning for sequences of parametric complex symmetric linear systems. ETNA, Electron. Trans. Numer. Anal. 18 (2004), 49-64.
MR 2083294 |
Zbl 1066.65048
[25] Li, L., Huang, T.-Z., Liu, X.-P.:
Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems. Numer. Linear Algebra Appl. 14 (2007), 217-235.
DOI 10.1002/nla.528 |
MR 2301913 |
Zbl 1199.65109
[29] Shirilord, A., Dehghan, M.:
Single step iterative method for linear system of equations with complex symmetric positive semi-definite coefficient matrices. Appl. Math. Comput. 426 (2022), Article ID 127111, 17 pages.
DOI 10.1016/j.amc.2022.127111 |
MR 4408297 |
Zbl 1511.65055
[31] Dijk, W. van, Toyama, F. M.:
Accurate numerical solutions of the time-dependent Schrödinger equation. Phys. Rev. E 75 (2007), Article ID 036707, 10 pages.
DOI 10.1103/PhysRevE.75.036707 |
MR 2358574
[33] Wu, S.-L.:
Several variants of the Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems. Numer. Linear Algebra Appl. 22 (2015), 338-356.
DOI 10.1002/nla.1952 |
MR 3313262 |
Zbl 1363.65055
[38] Zeng, M.-L.: Inexact modified QHSS iteration methods for complex symmetric linear systems of strong skew-Hermitian parts. IAENG, Int. J. Appl. Math. 51 (2021), 109-115.