Previous |  Up |  Next

Article

Keywords:
distributed optimization; nabla fractional difference; active disturbance rejection control; Lyapunov method
Summary:
This paper studies distributed optimization problems of a class of agents with fractional order dynamics and unknown external disturbances. Motivated by the celebrated active disturbance rejection control (ADRC) method, a fractional order extended state observer (Frac-ESO) is first constructed, and an ADRC-based PI-like protocol is then proposed for the target distributed optimization problem. It is rigorously shown that the decision variables of the agents reach a domain of the optimal solution when the external disturbance is bounded. In particular, for constant disturbances, the Frac-ESO is Mittag-Leffler convergent and the optimization problem can be solved exactly. Finally, numerical simulations are presented to validate the effective properties of the proposed algorithm.
References:
[1] Chen, Y. Q., Gao, Q., Wei, Y. H., Wang, Y.: Study on fractional order gradient methods. Appl. Math. Comput. 314 (2017), 310-321. DOI  | MR 3683875
[2] Chen, Z. Q., Liang, S.: Distributed aggregative optimization with quantized communication. Kybernetika 58 (2022), 1, 123-144. DOI  | MR 4405950
[3] Cheng, S. S., Liang, S.: Distributed optimization for multi-agent system over unbalanced graphs with linear convergence rate. Kybernetika 56 (2020), 3, 559-577. DOI  | MR 4131743
[4] Cheng, S. S., Liang, S., Fan, nd Y.: Distributed solving Sylvester equations with fractional order dynamics. Control Theory and Technology 19 (2021), 2, 249-259. DOI  | MR 4264963
[5] Ding, C., Wei, R., Liu, F.: Prescribed-time distributed optimization for time-varying objective functions: a perspective from time-domain transformation. J. Franklin Inst. 359 (2021), 17, 10,267-10,280. DOI  | MR 4507594
[6] Duan, S. Q., Chen, S., Zhao, Z. L.: Active disturbance rejection distributed optimization algorithm for first order multi-agent disturbance systems. Control and Decision 37 (2022), 3, 1559-1566.
[7] Gharesifard, B., Cortés, J.: Distributed continuous-time convex optimization on weight-balanced digraphs. IEEE Trans. Automat. Control 59 (2014), 3, 781-786. DOI  | MR 3188487
[8] Goodrich, C., Peterson, A. C.: Discrete Fractional Calculus. Springer, Cham 2015. MR 3445243
[9] Guo, G., Zhang, R. Y. K., Zhou, I. D.: A local-minimization-free zero-gradient-sum algorithm for distributed optimization. Automatica 157 (2023), 111,247. DOI  | MR 4631357
[10] Han, J. Q.: From PID to active disturbance rejection control. IEEE Trans. Industr. Electron. 56 (2009), 3, 900-906. DOI 
[11] Hong, X. L., Wei, Y. H., Zhou, S. Y., Yue, D. D.: Nabla fractional distributed optimization algorithms over undirected/directed graphs. J. Franklin Inst. 361 (2024), 3, 1436-1454. DOI  | MR 4689320
[12] Hong, X. L., Wei, Y. H., S., Zhou, Y., Yue, D. D., Cao, J. D.: Nabla fractional distributed optimization algorithm over unbalanced graphs. IEEE Control Systems Lett. 8 (2024), 241-246. DOI 
[13] Kia, S. S., Cortés, J., J., Martínez, S.: Distributed convex optimization via continuous-time coordination algorithms with discrete-time communication. Automatica 55 (2015), 254-264. DOI  | MR 3336675
[14] Liu, C. Y., Dou, X. H., Fan, Y., Cheng, S. S.: A penalty ADMM with quantized communication for distributed optimization over multi-agent systems. Kybernetika 59 (2023), 3, 392-417. DOI  | MR 4613716
[15] Pu, Y. F., Zhou, J. L., Zhang, Y., Zhang, N., Huang, G., Siarry, P.: Fractional extreme value adaptive training method: fractional steepest descent approach. IEEE Trans. Neural Networks Learning Systems 26 (2015), 4, 653-662. DOI  | MR 3452478
[16] Song, C. X., Qin, S. T., Zeng, Z. G.: Multiple Mittag-Leffler stability of almost periodic solutions for fractional-order delayed neural networks: Distributed optimization approach. IEEE Trans. Neural Networks Learning Systems (2023). DOI 
[17] Wang, J., Elia, N.: Control approach to distributed optimization. In: The 48th Annual Allerton Conference on Communication, Control, and Computing, Monticello 2010, pp. 557-561.
[18] Wang, K., Gong, P., Ma, Z. Y.: Fixed-time distributed time-varying optimization for nonlinear fractional-order multiagent systems with unbalanced digraphs. Fractal and Fractional 7 (2023), 11, 813. DOI  | MR 4698993
[19] Wang, Y., Song, Y.: Leader-following control of high-order multi-agent systems under directed graphs: pre-specified finite time approach. Automatica 87 (2018), 113-120. DOI  | MR 3733906
[20] Wang, Y. J., Song, Y. D., J., D., Hill, Krstic, M.: Prescribed-time consensus and containment control of networked multiagent systems. IEEE Trans. Cybernet. 49 (2019), 4, 1138-1147. DOI 
[21] Wei, Y. H.: Lyapunov stability theory for nonlinear nabla fractional order systems. IEEE Trans. Circuits Systems II: Express Briefs 68 (2021), 10, 3246-3250. DOI 
[22] Wei, Y. H.: Nabla Fractional Order Systems Theory: Analysis and Control. Science Press, Beijing 2023.
[23] Wei, Y. H., Chen, Y. Q., Liu, T. Y., Wang, Y.: Lyapunov functions for nabla discrete fractional order systems. ISA Trans. 88 (2019), 82-90. DOI 
[24] Wei, Y. H., Chen, Y. Q., Zhao, X., Cao, J. D.: Analysis and synthesis of gradient algorithms based on fractional-order system theory. IEEE Trans. Systems Man Cybernet.: Systems 53 (2023), 3, 1895-1906. DOI  | MR 0660680
[25] Wei, Y. H., Kang, Y., Yin, W. D., Wang, Y.: Generalization of the gradient method with fractional order gradient direction. J. Franklin Inst. 357 (2020), 4, 2514-2532. DOI  | MR 4077858
[26] Xu, Y., Han, T., Cai, K., Lin, Z., G, Yan, Fu, M.: A distributed algorithm for resource allocation over dynamic digraphs. IEEE Trans. Signal Process.65 (2017), 10, 2600-2612. DOI  | MR 3646746
[27] Yang, X. J., Zhao, W. M., Yuan, J. X., Chen, T., Zhang, C., Wang, L. Q.: Distributed optimization for fractional-order multi-agent systems based on adaptive backstepping dynamic surface control technology. Fractal and Fractional 6 (2022), 11, 642. DOI 
[28] Yang, X. L., Yuan, J. X., Chen, T., Yang, H.: Distributed adaptive optimization algorithm for fractional high-order multiagent systems based on event-triggered strategy and input quantization. Fractal and Fractional 7 (2023), 10, 749. DOI 
[29] Zhu, Y. N.: Research on Solving Network Distributed Optimization Problem Using Continuous-time Algorithms. Ph D. Thesis, Southeast University, Nanjing 2019.
Partner of
EuDML logo