Previous |  Up |  Next

Article

Title: Finite-time observability of probabilistic Boolean multiplex control networks (English)
Author: Cui, Yuxin
Author: Li, Shu
Author: Shan, Yunxiao
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 60
Issue: 1
Year: 2024
Pages: 60-75
Summary lang: English
.
Category: math
.
Summary: This paper investigates the finite-time observability of probabilistic Boolean multiplex control networks (PBMCNs). Firstly, the finite-time observability of the PBMCNs is converted into the set reachability issue according to the parallel interconnection technique (a minor modification of the weighted pair graph method in the literature). Secondly, the necessary and sufficient condition for the finite-time observability of PBMCNs is presented based on the set reachability. Finally, the main conclusions are substantiated by providing illustrative examples. (English)
Keyword: finite-time observability
Keyword: semi-tensor product
Keyword: probabilistic Boolean multiplex control networks
Keyword: set reachability
MSC: 93B07
MSC: 93C10
MSC: 93E03
DOI: 10.14736/kyb-2024-1-0060
.
Date available: 2024-04-12T10:15:09Z
Last updated: 2024-04-12
Stable URL: http://hdl.handle.net/10338.dmlcz/152346
.
Reference: [1] Azuma, S. I., Yoshida, T., Sugie, T.: Structural oscillatority analysis of Boolean networks..IEEE T. Control Netw. 6 (2018), 464-473. MR 3958930,
Reference: [2] Chen, S. Q., Wu, Y. H., Macauley, M., Sun, X. M.: Monostability and bistability of Boolean networks using semi-tensor products..IEEE T. Contr. Syst. Theory 6 (2018), 1379-1390. MR 4052461,
Reference: [3] Cheng, D.: Disturbance decoupling of Boolean control networks..IEEE Trans. Automat. Control 56 (2011), 2-10. MR 2777196,
Reference: [4] Cheng, D. Z., Li, C., He, F.: Observability of Boolean networks via set controllability approach..Syst. Control Lett. 115 (2018), 22-25. MR 3786117,
Reference: [5] Cheng, D., Qi, H., Liu, T., Wang, Y.: A note on observability of Boolean control networks..Syst. Control Lett. 87 (2016), 76-82. MR 3433244,
Reference: [6] Cheng, D. Z., Qi, H. S., Zhao, Y.: An Introduction to Semi-Tensor Product of Matrices and Its Applications..World Scientific Publishing Co. Pte. Ltd., Singapore 2012. MR 2963878
Reference: [7] Cheng, D. Z., Wu, Y. H., Zhao, G., Fu, S.: A comprehensive survey on STP approach to finite games..J. Syst. Sci. Complex. 34 (2021), 1666-1680. MR 4331641,
Reference: [8] Cui, Y. X., Li, S., Liu, F. Q., Wu, Y. H.: Set reachability and observability of Boolean multiplex control networks[J/OL]..J. Liaocheng University (Natural Science Edition) (2023), 1-11. MR 3379151,
Reference: [9] Cui, Y. X., Li, S., Shan, Y. X., Liu, F. Q.: Finite-time set reachability of probabilistic Boolean multiplex control networks..Appl. Sci. Basel 12 (2022), 883.
Reference: [10] Fu, S., Pan, Y., Feng, J. E., Zhao, J.: Strategy optimisation for coupled evolutionary public good games with threshold..Int. J. Control 95, (2022), 562-571. MR 4372084,
Reference: [11] Guo, Y. Q.: Observability of Boolean control networks using parallel extension and set reachability..IEEE T. Neur. Net. Learn. 29 (2018), 6402-6408. MR 3891710,
Reference: [12] Heidel, J., Maloney, J., Farrow, C., Rogers, J.A.: Finding cycles in synchronous Boolean networks with applications to biochemical systems..Int. J. Bifurcat. Chaos 13 (2003), 535-552. MR 1981054, 10.1142/S0218127403006765
Reference: [13] Kauffman, S. A.: Metabolic stability and epigenesis in randomly constructed genetic nets..J. Theor. Biol. 22 (1968), 437-467. MR 2436652,
Reference: [14] Kauffman, S. A.: At home in the universe..Math. Soc. Sci. 1 (1997), 94-95. MR 1626501
Reference: [15] Kitano, H.: Systems biology: A brief overview..Science 295 (2002), 1662-1664. 10.1126/science.1069492
Reference: [16] Laschov, D., Margaliot, M., Even, G.: Observability of Boolean networks: A graph-theoretic approach..Automatica 49 (2013), 2351-2362. MR 3072626,
Reference: [17] Le, S. T., Wu, Y. H., Toyoda, M.: A congestion game framework for service chain composition in NFV with function benefit..Inform. Science 514 (2020), 512-522. MR 4046121,
Reference: [18] Li, Y., Feng, J. E., Wang, B.: Output feedback observability of switched Boolean control networks..Infrom. Sci. 612 (2022), 612-625.
Reference: [19] Li, Y., Feng, J. E., Zhu, S.: Controllability and reachability of periodically time-variant mixed-valued logical control networks..Circ. Syst. Signal PR 40 (2021), 1-16. MR 1396882,
Reference: [20] Fornasini, E., Valcher, M.: Observability and reconstructibility of probabilistic Boolean networks..IEEE Contr. Syst. Lett. 4 (2019), 319-324. MR 4211304,
Reference: [21] Li, F., Ho, D.: Observability of Boolean networks with redundant channels..IEEE T. Circuits-II. 67 (2019), 1989-1993.
Reference: [22] Li, F., Sun, J.: Observability analysis of Boolean control networks with impulsive effects..IET Control Theory A 5 (2011), 1609-1616. MR 2883333,
Reference: [23] Li, F., Sun, J., Wu, Q.: Observability of Boolean control networks with state time delays..IEEE Trans. Neural Netw. 22 (2011), 948-954.
Reference: [24] Liu, Y., Zhong, J., Ho, D. W., Gui, W.: Minimal observability of Boolean networks..Sci. China Inform. Sci. 65 (2022), 1-12. MR 4404189,
Reference: [25] Liu, Y., Wang, L., Yang, Y., Wu, Z. G.: Minimal observability of Boolean control networks..Syst. Control Lett. 163 (2022), 105204. MR 4405482,
Reference: [26] Li, Y., Feng, J. E., Wang, B.: Observability of singular Boolean control networks with state delays..J. Franklin I. 359 (2022), 331-351. MR 4364957,
Reference: [27] Li, R., Zhang, Q., Zhang, J., Chu, T.: Distributional observability of probabilistic Boolean networks..Syst. Control Lett. 156 (2021), 105001. MR 4299865,
Reference: [28] Liu, Y., Cao, J., Wang, L., Wu, Z. G.: On pinning control reachability of probabilistic Boolean control networks..IET Control Theory A 63 (2020), 1-3. MR 4013798,
Reference: [29] Liu, Z., Zhong, J., Liu, Y., Gui, W.: Weak stabilization of Boolean networks under state-flipped control..IEEE T. Neur. Net. Learn. 5 (2021), 2693-2700. MR 4589423,
Reference: [30] Lu, J., Zhong, J., Huang, C., Cao, J.: On pinning controllability of Boolean control networks..IEEE T. Automat. Control 61 (2015), 1658-1663. MR 3508713,
Reference: [31] Machado, A. M., Bazzan, A. L.: Self-adaptation in a network of social drivers: Using random boolean networks..In: Proc. 2011 Workshop on Organic Computing, Paris 2011, pp. 33-40.
Reference: [32] Meng, M., Li, L.: Stability and pinning stabilization of markovian jump Boolean networks..IEEE T. Circuits II 69 (2022), 3565-3569.
Reference: [33] Pan, Q., Zhong, J., Lin, L., Lin, B., Liu, X.: Finite time observability of probabilistic Boolean control networks..Asian J. Control 25 (2022), 325-334. MR 4562337,
Reference: [34] Toyoda, M., Wu, Y. H.: Mayer-type optimal control of probabilistic Boolean control network with uncertain selection probabilities..IEEE T. Cybernetics 51 (2021), 3079-3092.
Reference: [35] Wang, J., Liu, Y., Li, H.: Finite-time controllability and set controllability of impulsive probabilistic Boolean control networks..IEEE Access 8 (2020), 111995-112002.
Reference: [36] Wang, L., Liu, Y., Wu, Z. G., Lu, J., Yu, L.: Stabilization and finite stabilization of probabilistic Boolean control networks..IEEE T. Syst. Man CY-S. 51 (2019), 1599-1566. MR 3901770,
Reference: [37] Wu, Y. H., Cheng, D. Z., Ghosh, B. K., Shen, T.: Recent advances in optimization and game theoretic control for networked systems..Asian J. Control 21 (2019), 2493-2512. MR 4067608,
Reference: [38] Wu, G., Dai, L., Liu, Z., Chen, T., Pan, J.: Online observability of Boolean control networks..IFAC - PapersOnLine 53 (2020), 1057-1064.
Reference: [39] Wu, Y. H., Guo, Y. Q., Toyoda, M.: Policy iteration approach to the infinite horizon average optimal control of probabilistic Boolean networks..IEEE T. Neur. Net. Learn. 32 (2020), 2910-2924. MR 4285216,
Reference: [40] Wu, Y. H., Sun, X. M., Zhao, X., Shen, T. L.: Optimal control of Boolean control networks with average cost: A policy iteration approach..Automatica 100 (2019), 378-387. MR 3885198,
Reference: [41] Wu, Y. H., Xu, J., Sun, X., Wang, W.: Observability of Boolean multiplex control networks..Sci. Rep. 7 (2017), 46495.
Reference: [42] Yu, Y., Meng, M., Feng, J. E.: Observability of Boolean networks via matrix equations..Automatica 111 (2020), 108621. MR 4039368,
Reference: [43] Zhu, S., Feng, J. E., Zhao, J.: State feedback for set stabilization of markovian jump Boolean control networks..Discrete Cont. Dyn. Syst. 14 (2021), 1591-1605. MR 4220582,
Reference: [44] Zhu, Q., Liu, Y., Lu, J., Cao, J.: Controllability and observability of Boolean control networks via sampled-data control..IEEE T. Control Netw. 6 (2018), 1291-1301. MR 4052453,
Reference: [45] Zhang, Q. L., Feng, J. E., Wang, B.: Set reachability of markovian jump Boolean networks and its applications..IET Control Theory A 14 (2020), 2914-2923. MR 4418022,
Reference: [46] Zhang, K., Zhang, L.: Observability of Boolean control networks: A unified approach based on finite automata..IEEE T. Automat. Control 61 (2016), 2733-2738. MR 3545104,
Reference: [47] Zhang, K., Zhang, L., Xie, L.: Finite automata approach to observability of switched Boolean control networks..Nonlinear Anal-Hybri. 19 (2016), 186-197. MR 3425354,
Reference: [48] Zhong, J., Lu, J., Huang, T., Ho, D. W.: Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks..IEEE T. Cybernetics 47 (2017), 3482-3493.
Reference: [49] Zhou, R., Guo, Y. Q., Gui, W.: Set reachability and observability of probabilistic Boolean networks..Automatica 106 (2019), 230-241. MR 3952584,
Reference: [50] Zhu, Q., Liu, Y., Lu, J., Cao, J.: Observability of Boolean control networks..Sci. China Inform. Sci. 61 (2018), 1-12. MR 3718227,
.

Files

Files Size Format View
Kybernetika_60-2024-1_4.pdf 502.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo