[1] Blokdyk, G.: Artificial Neural Network: A Complete Guide. Createspace Independent Publishing Platform, Scotts Valey 2017.
[2] Borş, A. G., Pitas, I.: Robust RBF networks. In: Radial basis function networks 1. (R. J. Howlett, L. C. Jain, and J. Kacprzyk, eds.). Recent developments in theory and applications, Physica Verlag Rudolf Liebing KG, Vienna 2001, pp. 123-133.
[3] Boudt, K., Rousseeuw, P. J., Vanduffel, S., Verdonck, T.:
The minimum regularized covariance determinant estimator. Statist. Computing 30 (2020), 113-128.
DOI |
MR 4057474
[4] Chatterjee, S., Hadi, A. S.: Regression Analysis by Example. (Fifth edition.). Wiley, Hoboken 2012.
[5] Cheng, Y. B., Chen, X. H., Li, H. L., Cheng, Z. Y., al., R. Jiang et:
Analysis and comparison of Bayesian methods for measurement uncertainty evaluation. Math. Problems Engrg. (2018), 7509046.
DOI |
MR 3816161
[6] Chollet, F.: Keras.
[7] Dodge, Y., J, Jurečková:
Adaptive Regression. Springer, New York 2000.
MR 1932533
[8] Dong, J., Zhao, Y., Liu, C., Han, Z. F., Leung, C. S.:
Orthogonal least squares based center selection for fault-tolerant RBF networks. Neurocomputing 339 (2019), 217-231.
DOI
[9] Dua, D., Graff, C.: UCI Machine Learning Repository.
[10] Egrioglu, E., Bas, E., Karahasan, O.:
Winsorized dendritic neuron model artificial neural network and a robust training algorithm with Tukey's biweight loss function based on particle swarm optimization. Granular Comput. 8 (2023), 491-501.
DOI
[11] Fath, A. H., Madanifar, F., Abbasi, M.:
Implementation of multilayer perceptron (MLP) and radial basis function (RBF) neural networks to predict solution gas-oil ratio of crude oil systems. Petroleum 6 (2020), 80-91.
DOI
[12] Hallin, M., Paindaveine, D., Šiman, M.:
Multivariate quantiles and multiple-output regression quantiles: From $L_1$ optimization to halfspace depth. Ann. Statist. 38 (2010), 635-669.
DOI |
MR 2604670 |
Zbl 1183.62088
[13] Han, I., Qian, X., Huang, H., Huang, T.:
Efficient design of multicolumn RBF networks. Neurocomputing 450 (2021), 253-263.
DOI
[14] Hastie, T., Tibshirani, R., Friedman, J.:
The Elements of Statistical Learning: Data Mining, Inference, and Prediction. (Second edition.). Springer, New York 2009.
MR 2722294
[15] Jurečková, J., Picek, J., Schindler, M.:
Robust Statistical Methods with R. (Second edition.). Chapman and Hall/CRC, Boca Raton 2019.
MR 3967085
[16] Kalina, J., Tichavský, J.:
On robust estimation of error variance in (highly) robust regression. Measurement Sci. Rev. 20 (2020), 6-14.
DOI
[17] Kalina, J., Neoral, A., Vidnerová, P.:
Effective automatic method selection for nonlinear regression modeling. Int. J. Neural Syst. 31 (2021), 2150020.
DOI
[18] Kalina, J., Tumpach, J., Holeňa, M.:
On combining robustness and regularization in training multilayer perceptrons over small data. In: 2000 International Joint Conference on Neural Networks (IJCNN), IEEE 2022.
DOI
[19] Karar, M. E.:
Robust RBF neural network-based backstepping controller for implantable cardiac pacemakers. Int. J. Adaptive Control Signal Process. 32 (2018), 1040-1051.
DOI |
MR 3826364
[20] Khan, I. A., Hussain, T., Ullah, A., Rho, S., Lee, M., M., Baik, S. W.:
Towards efficient electricity forecasting in residential and commercial buildings: A novel hybrid CNN with a LSTM-AE based framework. Sensors 20 (2020), 1399.
DOI
[21] Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: NIPS'17: Proc. 31st International Conference on Neural Information Processing Systems, Curran Associates, New York 2017, pp. 972-981.
[22] Knefati, M. A., Chauvet, P. E., N'Guyen, S., Daya, B.:
Reference curves estimation using conditional quantile and radial basis function network with mass constraint. Neural Process. Lett. 43 (2016), 17-30.
DOI
[23] Koenker, R.:
Quantile regression: 40 years on. Annual Rev. Econom. 9 (2917), 155-176.
DOI |
MR 2268657
[24] Kordos, M., Rusiecki, A.:
Reducing noise impact on MLP training - Techniques and algorithms to provide noise-robustness in MLP network training. Soft Comput. 20 (2016), 46-65.
DOI
[25] Lee, C. C., Chung, P. C., Tsai, J. R., Chang, C. I.:
Robust radial basis function neural networks. IEEE Trans. Systems Man Cybernet. B 29 (1999), 674-685.
DOI
[26] Li, X., Sun, Y.:
Application of RBF neural network optimal segmentation algorithm in credit rating. Neural Computing Appl. 33 (2021), 8227-8235.
DOI
[27] Liu, Z., Leung, C. S., So, H. C.:
Formal convergence analysis on deterministic $\ell_1$-regularization based mini-batch learning for RBF networks. Neurocomputing 532 (2023), 77-93.
DOI
[28] Standards, National Institute of, (NIST), Technology: Nonlinear Regression Datasets.
[29] Paul, C., Vishwakarma, G. K.:
Back propagation neural networks and multiple regressions in the case of heteroscedasticity. Commun. Statist. Simul. Comput. 46 (2017), 6772-6789.
DOI |
MR 3764938
[30] Petneházi, G.:
Quantile convolutional neural networks for value at risk forecasting. Machine Learning Appl. 6 (2021), 100096.
DOI
[31] Poggio, T., Smale, S.:
The mathematics of learning: Dealing with data. Notices Amer. Math. Soc. 50 (2003), 537-544.
DOI |
MR 1968413
[32] Procházka, B.:
Regression quantiles and trimmed least squares estimator in the nonlinear regression model. Comput. Statist. Data Anal. 6 (1988), 385-391.
DOI |
MR 0947590
[33] Que, Q., Belkin, M.:
Back to the future: Radial basis function network revisited. IEEE Trans. Pattern Anal. Machine Intell. 42 (2020), 1856-1867.
DOI
[34] Romano, Y., Patterson, E., Candès, E. J.:
Conformalized quantile regression. ArXiv 2019.
DOI
[35] Rusiecki, A.:
Trimmed categorical cross-entropy for deep learning with label noise. Electron. Lett. 55 (2019), 319-320.
DOI
[36] Rusiecki, A.:
Robust learning algorithm based on LTA estimator. Neurocomputing 120 (2013), 624-632.
DOI
[37] Saleh, A. K. M. E., Picek, J., Kalina, J.:
R-estimation of the parameters of a multiple regression model with measurement errors. Metrika 75 (2012), 311-328.
DOI |
MR 2909549
[38] Seghouane, A. K., Shokouhi, N.:
Adaptive learning for robust radial basis function networks. IEEE Trans. Cybernet. 51 (2021), 2847-2856.
DOI
[39] Šíma, J., Vidnerová, P., Mrázek, V.:
Energy complexity model for convolutional neural networks. Lecture Notes Computer Sci. 14263 (2023), 186-198.
DOI
[40] Su, M. J., Deng, W.:
A fast robust learning algorithm for RBF network against outliers. Lecture Notes Computer Sci. 4113 (2006), 280-285.
DOI
[41] Sze, V., Chen, Y. B., Yang, T. J., Emer, J. S.: Efficient Processing of Deep Neural Networks. Morgan and Claypool, San Rafael 2020.
[42] Tukey, J.:
Comparing individual means in the analysis of variance. Biometrics 5 (1949), 99-114.
DOI |
MR 0030734
[43] Ullah, I., Youn, H. Y., Han, Y. H.: An efficient data aggregation and outlier detection scheme based on radial basis function neural network for WSN. J. Ambient Intell. Humanized Comput., in press (2022).
[44] Víšek, J.Á.:
Consistency of the least weighted squares under heteroscedasticity. Kybernetika 47 (2011), 179-206.
MR 2828572 |
Zbl 1228.62026
[45] Werner, T.:
Quantitative robustness of instance ranking problems. ArXiv 2021.
DOI |
MR 4549754
[46] Wilcox, R. R.:
Introduction to Robust Estimation and Hypothesis Testing. Fourth edition. Academic Pres, London 2017.
MR 3642283
[47] Yang, C., Oh, S. K., Pedrycz, W., Fu, Z., Yang, B.:
Design of reinforced fuzzy radial basis function neural network classifier driven with the aid of iterative learning techniques and support vector-based clustering. IEEE Trans. Fuzzy Systems 29 (2021), 2506-2520.
DOI
[48] Yerpude, P., Gudur, V.:
Predictive modelling of crime dataset using data mining. Int. J. Data Mining Knowledge Management Process 7 (2017), 43-58.
DOI
[49] Zhang, D., Zang, G., Li, J., Ma, K., Liu, H.:
Prediction of soybean price in China using QR-RBF neural network model. Computers Electron. Agriculture 154 (2018), 10-17.
DOI
[50] Zuo, Y.:
New algorithms for computing the least trimmed squares estimator. ArXiv 2022.
DOI