[1] Alanís-Durán, A., Cavazos-Cadena, R.:
An optimality system for finite average Markov decision chains under risk-aversion. Kybernetika 48 (2012), 1, 83-104.
MR 2932929
[2] Bäuerle, N., Rieder, U.:
Markov Decision Processes with Applications to Finance. Springer-Verlag, New York 2011.
MR 2808878 |
Zbl 1236.90004
[3] Bäuerle, N., Rieder, U.:
More risk-sensitive Markov decision processes. Math. Oper. Res. 39 (2014), 1, 105-120.
DOI |
MR 3173005
[4] Balaji, S., Meyn, S. P.:
Multiplicative ergodicity and large deviations for an irreducible Markov chain. Stoch. Proc. Appl. 90 (2000), 1, 123-144.
DOI |
MR 1787128
[5] Bielecki, T., Hernández-Hernández, D., Pliska, S. R.:
Risk sensitive control of finite state Markov chains in discrete time, with applications to portfolio management. Math. Methods Oper. Res. 50 (1999), 167-188.
DOI |
MR 1732397 |
Zbl 0959.91029
[6] Borkar, V. S., Meyn, S. P.:
Risk-sensitive optimal control for Markov decision process with monotone cost. Math. Oper. Res. 27 (2002), 1, 192-209.
DOI |
MR 1886226
[7] Cavazos-Cadena, R., Hernández-Hernández, D.:
A system of Poisson equations for a non-constant Varadhan functional on a finite state space. Appl. Math. Optim. 53 (2006), 101-119.
DOI |
MR 2190228
[8] Cavazos-Cadena, R., Hernández-Hernández, D.:
Nash equilibrium in a class of Markov stopping games. Kybernetika 48 (2012), 1027-1044.
MR 3086867
[9] Cavazos-Cadena, R., Rodríguez-Gutiérrez, L., Sánchez-Guillermo, D. M.:
Markov stopping game with an absorbing state. Kybernetika 57 (2021), 3, 474-492.
DOI |
MR 4299459
[10] Cavazos-Cadena, R., Cantú-Sifuentes, M., Cerda-Delgado, I.:
Nash equilibria in a class of Markov stopping games with total reward criterion. Math. Methods Oper. Res. 94 (2021), 319-340.
DOI |
MR 4338528
[11] Denardo, E. V., Rothblum, U. G.:
A turnpike theorem for A risk-sensitive Markov decision process with stopping. SIAM J. Control Optim. 45 (2006), 2, 414-431.
DOI |
MR 2246083
[12] Masi, G. B. Di, Stettner, L.:
Risk-sensitive control of discrete-time Markov processes with infinite horizon. SIAM J. Control Optim. 38 (1999), 1, 61-78.
DOI |
MR 1740607
[13] Masi, G. B. Di, Stettner, L.:
Infinite horizon risk sensitive control of discrete time Markov processes with small risk. Systems Control Lett. 40 (2000), 1, 305-321.
DOI |
MR 1829070 |
Zbl 0977.93083
[14] Masi, G. B. Di, Stettner, L.:
Infinite horizon risk sensitive control of discrete time Markov processes under minorization property. SIAM J. Control Optim. 46 (2007), 1, 231-252.
DOI |
MR 2299627
[16] Howard, R., Matheson, J.:
Risk-sensitive Markov decision processes. Management Science 18 (1972), 356-369.
DOI |
MR 0292497
[17] Jaśkiewicz, A.:
Average optimality for risk sensitive control with general state space. Ann. App. Probab. 17 (2007), 2, 654-675.
DOI |
MR 2308338
[18] Kontoyiannis, I., Meyn, S. P.:
Spectral theory and limit theorems for geometrically ergodic Markov processes. Ann. App. Probab. 13 (2003), 1, 304-362.
DOI |
MR 1952001
[19] López-Rivero, J., Cavazos-Cadena, R., Cruz-Suárez, H.:
Risk-sensitive Markov stopping games with an absorbing state. Kybernetika 58 (2022), 1, 101-122.
DOI |
MR 4405949
[20] Martínez-Cortés, V. M.:
Bipersonal stochastic transient Markov games with stopping times and total reward criteria. Kybernetika 57 (2021), 1, 1-14.
DOI |
MR 4231853
[21] Pitera, M., Stettner, L.:
Long run risk sensitive portfolio with general factors. Math. Meth. Oper. Res. 82 (2016), 2, 265-293.
DOI |
MR 3489700
[23] Sladký, K.: Ramsey growth model under uncertainty. In: Proc. 27th International Conference Mathematical Methods in Economics 2009 (H. Brozová, ed.), Kostelec nad Cernými lesy 2009, pp. 296-300.
[24] Sladký, K.: Risk-sensitive Ramsey growth model. In: Proce. 27th International Conference Mathematical Methods in Economics 2010 (M. Houda and J. Friebelová, eds.), Ceské Budějovice 2010, pp. 1-6.
[25] Sladký, K.:
Risk-sensitive average optimality in Markov decision processes. Kybernetika 54 (2018), 1218-1230.
DOI |
MR 3902630
[26] Stettner, L.:
Risk sensitive portfolio optimization. Math. Meth. Oper. Res. 50 (1999), 3, 463-474.
DOI |
MR 1731299