Previous |  Up |  Next

Article

Title: A balanced finite-element method for an axisymmetrically loaded thin shell (English)
Author: Heuer, Norbert
Author: Linss, Torsten
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 2
Year: 2024
Pages: 151-168
Summary lang: English
.
Category: math
.
Summary: We analyse a finite-element discretisation of a differential equation describing an axisymmetrically loaded thin shell. The problem is singularly perturbed when the thickness of the shell becomes small. We prove robust convergence of the method in a balanced norm that captures the layers present in the solution. Numerical results confirm our findings. (English)
Keyword: axisymmetrically loaded thin shell
Keyword: singular perturbation
Keyword: balanced norm
Keyword: layer-adapted meshes
Keyword: finite element method
MSC: 65N30
MSC: 74K25
MSC: 74S05
idZBL: Zbl 07893329
idMR: MR4728189
DOI: 10.21136/AM.2024.0134-23
.
Date available: 2024-04-04T12:06:23Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152309
.
Reference: [1] Chapelle, D., Bathe, K.-J.: The Finite Element Analysis of Shells --- Fundamentals.Computational Fluid and Solid Mechanics. Springer, Berlin (2011). Zbl 1211.74002, MR 3234588, 10.1007/978-3-642-16408-8
Reference: [2] Devloo, P. R. B., Farias, A. M., Gomes, S. M., Gonçalves, J. L.: Application of a combined continuous-discontinuous Galerkin finite element method for the solution of the Girkmann problem.Comput. Math. Appl. 65 (2013), 1786-1794. Zbl 1391.74243, MR 3055736, 10.1016/j.camwa.2013.03.015
Reference: [3] Flügge, W.: Stresses in Shells.Springer, Berlin (1960). Zbl 0092.41504, MR 0116598, 10.1007/978-3-642-88291-3
Reference: [4] Girkmann, K.: Flächentragwerke: Einführung in die Elastostatik der Scheiben, Platten, Schalen und Faltwerke.Springer, Vienna (1956), German. Zbl 0071.39404, MR 0119567, 10.1007/978-3-7091-2388-1
Reference: [5] Gol'denveĭzer, A. L.: Theory of Elastic Thin Shells.International Series of Monographs in Aeronautics and Astronautics. Pergamon Press, Oxford (1961). Zbl 0052.41901, MR 0135763, 10.1016/c2013-0-01676-3
Reference: [6] Olsson, R. Gran, Reissner, E.: A problem of buckling of elastic plates of variable thickness.J. Math. Phys., Mass. Inst. Tech. 19 (1940), 131-139. Zbl 0024.09002, MR 0001717, 10.1002/sapm1940191131
Reference: [7] Heuer, N., Karkulik, M.: A robust DPG method for singularly perturbed reaction-diffusion problems.SIAM J. Numer. Anal. 55 (2017), 1218-1242. Zbl 1362.65125, MR 3654124, 10.1137/15M104130
Reference: [8] Lin, R., Stynes, M.: A balanced finite element method for singularly perturbed reaction-diffusion problems.SIAM J. Numer. Anal. 50 (2012), 2729-2743. Zbl 1260.65103, MR 3022240, 10.1137/11083778
Reference: [9] Linß, T.: Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems.Lecture Notes in Mathematics 1985. Springer, Berlin (2010). Zbl 1202.65120, MR 2583792, 10.1007/978-3-642-05134-0
Reference: [10] Miller, J. J. H., O'Riordan, E., Shishkin, G. I.: Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions.World Scientific, Singapore (1996). Zbl 0915.65097, MR 1439750, 10.1142/2933
Reference: [11] Morley, L. S. D.: Analysis of developable shells with special reference to the finite element method and circular cylinders.Philos. Trans. roy. Soc. London, Ser. A 281 (1976), 113-170. Zbl 0319.73040, 10.1098/rsta.1976.0023
Reference: [12] Niemi, A. H.: Benchmark computations of stresses in a spherical dome with shell finite elements.SIAM J. Sci. Comput. 38 (2016), B440--B457. Zbl 1419.74239, MR 3513868, 10.1137/15M1027590
Reference: [13] Niemi, A. H., Babuška, I., Pitkäranta, J., Demkowicz, L.: Finite element analysis of the Girkmann problem using the modern $hp$-version and the classical $h$-version.Engin. Comput. 28 (2012), 123-134. 10.1007/s00366-011-0223-0
Reference: [14] R. E. O'Malley, Jr.: Singular perturbations, asymptotic evaluation of integrals, and computational challenges.Asymptotic Analysis and the Numerical Solution of Partial Differential Equations Lecture Notes in Pure and Applied Mathematics 130. Marcel Dekker, New York (1991), 3-16. Zbl 0736.65059, MR 1122414, 10.1201/b16933-3
Reference: [15] Pitkäranta, J., Babuška, I., Szabó, B.: The dome and the ring: Verification of an old mathematical model for the design of a stiffened shell roof.Comput. Math. Appl. 64 (2012), 48-72. Zbl 1252.74043, MR 2927141, 10.1016/j.camwa.2012.03.008
Reference: [16] Reissner, E.: Remark on the theory of bending of plates of variable thickness.J. Math. Phys. 16 (1937), 43-45 \99999JFM99999 63.0755.02. 10.1002/sapm193716143
Reference: [17] Roos, H. G., Lin{ß}, T.: Sufficient conditions for uniform convergence on layer-adapted grids.Computing 63 (1999), 27-45. Zbl 0931.65085, MR 1702159, 10.1007/s006070050049
Reference: [18] Schwab, C.: $p$- and $hp$-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics.Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1998). Zbl 0910.73003, MR 1695813
Reference: [19] Shishkin, G. I.: Discrete Approximation of Singularly Perturbed Elliptic and Parabolic Equations.Russian Academy of Sciences, Ural Section, Ekaterinburg (1992), Russian.
Reference: [20] Tin-Loi, F., Pulmano, V. A., Thambiratnam, D.: BEF analogy for axisymmetrically loaded cylindrical shells.Comput. Struct. 34 (1990), 281-285. Zbl 0713.73090, 10.1016/0045-7949(90)90371-8
Reference: [21] Ventsel, E., Krauthammer, T.: Thin Plates and Shells: Theory, Analysis, and Applications.CRC Press, Boca Raton (2001). 10.1201/9780203908723
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo