Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
semigroup; Rees matrix semigroup; representation of semigroups
Summary:
We study the right regular representation of special Rees matrix semigroups over semigroups, and discuss their embedding in idempotent-free left simple semigroups.
References:
[1] Ayik H., Ruškuc N.: Generators and relations of Rees matrix semigroups. Proc. Edinburgh Math. Soc. (2) 42 (1999), no. 3, 481–495. MR 1721767
[2] Chrislock J. L.: Semigroups whose regular representation is a group. Proc. Japan Acad. 40 (1964), no. 10, 799–800. MR 0179275
[3] Chrislock J. L.: Semigroups whose regular representation is a right group. Amer. Math. Monthly 74 (1967), no. 9, 1097–1100. DOI 10.2307/2313623 | MR 0227295
[4] Clifford A. H., Preston G. B.: The Algebraic Theory of Semigroups. Vol. I. Math. Surveys, 7, American Mathematical Society, Providence, 1961. MR 0132791
[5] Clifford A. H., Preston G. B.: The Algebraic Theory of Semigroups. Vol. II. Math. Surveys, 7, American Mathematical Society, Providence, 1967. MR 0218472
[6] Cohn P. M.: Embeddings in semigroups with one-sided division. J. London Math. Soc. 31 (1956), no. 2, 169–181. DOI 10.1112/jlms/s1-31.2.169 | MR 0079007
[7] Croisot R.: Demi-groupes simple inversifs à gauche. C. R. Acad. Sci. Paris 239 (1954), 845–847 (French). MR 0064035
[8] Descalço L., Ruškuc N.: On automatic Rees matrix semigroups. Comm. Algebra 30 (2002), no. 3, 1207–1226. DOI 10.1080/00927870209342378 | MR 1892597
[9] Howie J. M.: An Introduction to Semigroup Theory. L. M. S. Monographs, 7, Academic Press, London, 1976. MR 0466355 | Zbl 0355.20056
[10] Kambites M.: The loop problem for Rees matrix semigroups. Semigroup Forum 76 (2008), no. 2, 204–216. DOI 10.1007/s00233-007-9016-6 | MR 2377584
[11] Kehayopulu N., Tsingelis M.: Ordered semigroups which are both right commutative and right cancellative. Semigroup Forum 84 (2012), no. 3, 562–568. DOI 10.1007/s00233-011-9346-2 | MR 2917192
[12] Lawson M. V.: Rees matrix semigroups. Proc. Edinburgh Math. Soc. (2) 33 (1990), no. 1, 23–37. MR 1038762
[13] McAlister D. B.: Rees matrix covers for locally inverse semigroups. Trans. Amer. Math. Soc. 227 (1983), no. 2, 727–738. DOI 10.1090/S0002-9947-1983-0694385-3 | MR 0694385
[14] Nagy A.: Subdirectly irreducible right commutative semigroups. Semigroup Forum 46 (1993), no. 2, 187–198. DOI 10.1007/BF02573565 | MR 1200213
[15] Nagy A.: Right commutative $\Delta$-semigroups. Acta Sci. Math. (Szeged) 66 (2000), no. 1–2, 33–46. MR 1768852
[16] Nagy A.: Special Classes of Semigroups. Adv. Math. (Dordr.), 1, Kluwer Academic Publishers, Dordrecht, 2001. MR 1777265
[17] Nagy A.: A supplement to my paper “Right commutative $\Delta$-semigroups". Acta Sci. Math. (Szeged) 71 (2005), no. 1–2, 35–36. MR 2160353
[18] Nagy A.: Medial permutable semigroups of the first kind. Semigroup Forum 76 (2008), no. 2, 297–308. DOI 10.1007/s00233-007-9027-3 | MR 2377591
[19] Nagy A.: Left reductive congruences on semigroups. Semigroup Forum 87 (2013), no. 1, 129–148. DOI 10.1007/s00233-012-9428-9 | MR 3079776
[20] Nagy A.: Remarks on the paper “M. Kolibiar, On a construction of semigroups". Period. Math. Hungar. 71 (2015), no. 2, 261–264. DOI 10.1007/s10998-015-0094-z | MR 3421700
[21] Nagy A.: Left equalizer simple semigroups. Acta Math. Hungar. 148 (2016), no. 2, 300–311. DOI 10.1007/s10474-015-0578-6 | MR 3498533
[22] Nagy A.: A construction of left equalizer simple medial semigroups. Period. Math. Hungar. 86 (2023), no. 1, 37–42. DOI 10.1007/s10998-022-00454-w | MR 4554111
[23] Nagy A., Nagy O.: A construction of semigroups whose elements are middle units. International Journal of Algebra 14 (2020), no. 3, 163–169. DOI 10.12988/ija.2020.91248
[24] Nagy A., Tóth C.: On the probability that two elements of a finite semigroup have the same right matrix. Comment. Math. Univ. Carolin. 63 (2022), no. 1, 21–31. MR 4445735
[25] Petrich M.: Lectures in Semigroups. Math. Lehrbücher Monogr. I. Abt. Math. Lehrbücher, 29, Academie-Verlag, Berlin, 1977. MR 0447437
[26] Petrich M.: Embedding semigroups into idempotent generated ones. Monatsh. Math. 141 (2004), no. 4, 315–322. DOI 10.1007/s00605-003-0040-7 | MR 2053656
[27] Rees D.: On semi-groups. Proc. Cambridge Philos. Soc. 36 (1940), no. 4, 387–400. MR 0002893
[28] Teissier M.: Sur les demi-groupes ne contenant pas d'élément idempotent. C. R. Acad. Sci. Paris 237 (1953), 1375–1377 (French). MR 0059902
[29] Tóth C.: Right regular triples of semigroups. available at arXiv:2211.06600v1 [math.GR] (2022), 13 pages. MR 4666108
Partner of
EuDML logo