Previous |  Up |  Next

Article

Title: The unit group of some fields of the form $\mathbb {Q}(\sqrt {2}, \sqrt {p}, \sqrt {q}, \sqrt {-l})$ (English)
Author: El Hamam, Moha Ben Taleb
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 149
Issue: 1
Year: 2024
Pages: 49-55
Summary lang: English
.
Category: math
.
Summary: Let $p$ and $q$ be two different prime integers such that $p\equiv q\equiv 3\pmod 8$ with $(p/q)=1$, and $l$ a positive odd square-free integer relatively prime to $p$ and $q$. In this paper we investigate the unit groups of number fields $\mathbb L=\mathbb {Q}(\sqrt {2}, \sqrt {p}, \sqrt {q}, \sqrt {-l})$. (English)
Keyword: unit group
Keyword: multiquadratic number fields
Keyword: unit index
MSC: 11R04
MSC: 11R27
MSC: 11R29
idZBL: Zbl 07830543
idMR: MR4715556
DOI: 10.21136/MB.2023.0077-22
.
Date available: 2024-03-13T10:18:12Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152292
.
Reference: [1] Azizi, A.: Unités de certains corps de nombres imaginaires et abéliens sur $\Bbb Q$.Ann. Sci. Math. Qué. 23 (1999), 15-21 French \99999MR99999 1721726 . Zbl 1041.11072, MR 1721726
Reference: [2] Azizi, A., Chems-Eddin, M. M., Zekhnini, A.: Note on the Hilbert 2-class field tower.Math. Bohem. 147 (2022), 513-524 \99999DOI99999 10.21136/MB.2022.0056-21 . MR 4512171
Reference: [3] Chems-Eddin, M. M.: Arithmetic of some real triquadratic fields: Units and 2-class groups.Available at https://arxiv.org/abs/2108.04171v1 (2021), 32 pages.
Reference: [4] Chems-Eddin, M. M.: Unit groups of some multiquadratic number fields and 2-class groups.Period. Math. Hung. 84 (2022), 235-249. Zbl 07551296, MR 4423478, 10.1007/s10998-021-00402-0
Reference: [5] Chems-Eddin, M. M.: On units of some fields of the form $\Bbb{Q}(\sqrt2, \sqrt{p}, \sqrt{q}, \sqrt{-\ell})$.Math. Bohem. 148 (2023), 237-242. Zbl 7729575, MR 4585579, 10.21136/MB.2022.0128-21
Reference: [6] Chems-Eddin, M. M., Azizi, A., Zekhnini, A.: Unit groups and Iwasawa lambda invariants of some multiquadratic number fields.Bol. Soc. Mat. Mex, III. Ser. 27 (2021), Article ID 24, 16 pages. Zbl 1468.11223, MR 4220815, 10.1007/s40590-021-00329-z
Reference: [7] Chems-Eddin, M. M., Zekhnini, A., Azizi, A.: Units and 2-class field towers of some multiquadratic number fields.Turk. J. Math. 44 (2020), 1466-1483. Zbl 1455.11140, MR 4122918, 10.3906/mat-2003-117
Reference: [8] Chems-Eddin, M. M., Zekhnini, A., Azizi, A.: On the Hilbert 2-class field towers of some cyclotomic $\Bbb Z_2$-extensions.Available at https://arxiv.org/abs/2005.06646 (2021), 15 pages. MR 4769739
Reference: [9] Chems-Eddin, M. M., Zekhnini, A., Azizi, A.: Unit groups of some multiquadratic number fields of degree 16.São Paulo J. Math. Sci 16 (2022), 1091-1096. Zbl 7626140, MR 4515950, 10.1007/s40863-020-00209-w
Reference: [10] Kubota, T.: Über den bizyklischen biquadratischen Zahlkörper.Nagoya Math. J. 10 (1956), 65-85 German. Zbl 0074.03001, MR 0083009, 10.1017/S0027763000000088
Reference: [11] Wada, H.: On the class number and the unit group of certain algebraic number fields.J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209. Zbl 0158.30103, MR 0214565
.

Files

Files Size Format View
MathBohem_149-2024-1_5.pdf 207.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo