Previous |  Up |  Next

Article

Keywords:
skew Hurwitz series ring; $\omega $-compatible ring; skew Hurwitz serieswise; quasi-Armendariz rings; zip ring; APP ring
Summary:
We study McCoy's theorem to the skew Hurwitz series ring $({\rm HR}, \omega )$ for some different classes of rings such as: semiprime rings, APP rings and skew Hurwitz serieswise quasi-Armendariz rings. Moreover, we establish an equivalence relationship between a right zip ring and its skew Hurwitz series ring in case when a ring $R$ satisfies McCoy's theorem of skew Hurwitz series.
References:
[1] Ahmadi, M., Moussavi, A., Nourozi, V.: On skew Hurwitz serieswise Armendariz rings. Asian-Eur. J. Math. 7 (2014), Article ID 1450036, 19 pages. DOI 10.1142/S1793557114500363 | MR 3257511 | Zbl 1308.16033
[2] Annin, S.: Associated primes over Ore extensions rings. J. Algera Appl. 3 (2004), 193-205. DOI 10.1142/S0219498804000782 | MR 2069261 | Zbl 1060.16029
[3] Armendariz, E. P.: A note on extensions of Baer and P.P.-rings. J. Aust. Math. Soc. 18 (1974), 470-473. DOI 10.1017/S1446788700029190 | MR 0366979 | Zbl 0292.16009
[4] Beachy, J. A., Blair, W. D.: Rings whose faithful left ideals are cofaithful. Pac. J. Math. 58 (1975), 1-13. DOI 10.2140/pjm.1975.58.1 | MR 0393092 | Zbl 0309.16004
[5] Benhissi, A., Koja, F.: Basic properties of Hurwitz series rings. Ric. Mat. 61 (2012), 255-273. DOI 10.1007/s11587-012-0128-2 | MR 3000659 | Zbl 1318.13034
[6] Birkenmeier, G. F., Kim, J. Y., Park, J. K.: On quasi-Baer rings. Algebra and Its Applications Contemporary Mathematics 259. AMS, Providence (2000), 67-92. DOI 10.1090/conm/259 | MR 1778495 | Zbl 0974.16006
[7] Cedó, F.: Zip rings and Mal'cev domains. Commun. Algebra 19 (1991), 1983-1991. DOI 10.1080/00927879108824242 | MR 1121118 | Zbl 0733.16007
[8] Cortes, W.: Skew polynomial extensions over zip rings. Int. J. Math. Math. Sci. 2008 (2008), Article ID 496720, 9 pages. DOI 10.1155/2008/496720 | MR 2393011 | Zbl 1159.16021
[9] Faith, C.: Rings with zero intersection property on annihilators: Zip rings. Publ. Mat., Barc. 33 (1989), 329-338. DOI 10.5565/PUBLMAT_33289_09 | MR 1030970 | Zbl 0702.16015
[10] Faith, C.: Annihilator ideals, associated primes and Kasch-McCoy commutative rings. Commun. Algebra 19 (1991), 1867-1892. DOI 10.1080/00927879108824235 | MR 1121111 | Zbl 0729.16015
[11] Fields, D. E.: Zero divisors and nilpotent elements in power series rings. Proc. Am. Math. Soc. 27 (1971), 427-433. DOI 10.1090/S0002-9939-1971-0271100-6 | MR 0271100 | Zbl 0219.13023
[12] Fliess, M.: Sur divers produits de séries formelles. Bull. Soc. Math. Fr. 102 (1974), 181-191 French. DOI 10.24033/bsmf.1777 | MR 0354647 | Zbl 0313.13021
[13] Gilmer, R., Grams, A., Parker, T.: Zero divisors in power series rings. J. Reine Angew. Math. 278/279 (1975), 145-164. DOI 10.1515/crll.1975.278-279.145 | MR 0387274 | Zbl 0309.13009
[14] Hashemi, E., Moussavi, A.: Polynomial extensions of quasi-Baer rings. Acta. Math. Hung. 107 (2005), 207-224. DOI 10.1007/s10474-005-0191-1 | MR 2148584 | Zbl 1081.16032
[15] Hassanein, A. M.: Clean rings of skew Hurwitz series. Matematiche 62 (2007), 47-54. MR 2389111 | Zbl 1150.16029
[16] Hirano, Y.: On annihilator ideals of a polynomial ring over a noncommutative ring. J. Pure Appl. Algebra 168 (2002), 45-52. DOI 10.1016/S0022-4049(01)00053-6 | MR 1879930 | Zbl 1007.16020
[17] Hong, C. Y., Kim, N. K., Kwak, T. K., Lee, Y.: Extensions of zip rings. J. Pure Appl. Algebra 195 (2005), 231-242. DOI 10.1016/j.jpaa.2004.08.025 | MR 2114273 | Zbl 1071.16020
[18] Hong, C. Y., Kim, N. K., Lee, Y.: Extensions of McCoy's theorem. Glasg. Math. J. 52 (2010), 155-159. DOI 10.1017/S0017089509990243 | MR 2587825 | Zbl 1195.16026
[19] Jones, L. G., Weiner, L.: Advanced problems and solutions: Solutions 4419. Concerning a theorem of McCoy. Am. Math. Mon. 59 (1952), 336-337. DOI 10.1080/00029890.1952.11988133 | MR 0048481
[20] Keigher, W. F.: Adjunctions and comonads in differential algebra. Pac. J. Math. 59 (1975), 99-112. DOI 10.2140/pjm.1975.59.99 | MR 0392957 | Zbl 0327.12104
[21] Keigher, W. F.: On the ring of Hurwitz series. Commun. Algebra 25 (1997), 1845-1859. DOI 10.1080/00927879708825957 | MR 1446134 | Zbl 0884.13013
[22] Keigher, W. F., Pritchard, F. L.: Hurwitz series as formal functions. J. Pure Appl. Algebra 146 (2000), 291-304. DOI 10.1016/S0022-4049(98)00099-1 | MR 1742345 | Zbl 0978.12007
[23] Krempa, J.: Some examples of reduced rings. Algebra Colloq. 3 (1996), 289-300. MR 1422968 | Zbl 0859.16019
[24] Leroy, A., Matczuk, J.: Zip property of certain ring extensions. J. Pure Appl. Algebra 220 (2016), 335-345. DOI 10.1016/j.jpaa.2015.06.015 | MR 3393464 | Zbl 1334.16019
[25] Liu, Z., Zhao, R.: A generalization of PP-rings and p.q.-Baer rings. Glasg. Math. J. 48 (2006), 217-229. DOI 10.1017/S0017089506003016 | MR 2256973 | Zbl 1110.16003
[26] McCoy, N. H.: Remarks on divisors of zero. Am. Math. Mon. 49 (1942), 286-295. DOI 10.1080/00029890.1942.11991226 | MR 0006150 | Zbl 0060.07703
[27] McCoy, N. H.: Annihilators in polynomial rings. Am. Math. Mon. 64 (1957), 28-29. DOI 10.1080/00029890.1957.11988927 | MR 0082486 | Zbl 0077.25903
[28] Paykan, K.: Nilpotent elements of skew Hurwitz series rings. Rend. Circ. Mat. Palermo (2) 65 (2016), 451-458. DOI 10.1007/s12215-016-0245-y | MR 3571322 | Zbl 1353.16046
[29] Paykan, K.: A study on skew Hurwitz series rings. Ric. Mat. 66 (2017), 383-393. DOI 10.1007/s11587-016-0305-9 | MR 3715907 | Zbl 1394.16050
[30] Paykan, K.: Principally quasi-Baer skew Hurwitz series rings. Bull. Unione Mat. Ital. 10 (2017), 607-616. DOI 10.1007/s40574-016-0098-5 | MR 3736710 | Zbl 1381.16042
[31] Rege, M. B., Chhawchharia, S.: Armendariz rings. Proc. Japan Acad., Ser. A 73 (1997), 14-17. DOI 10.3792/pjaa.73.14 | MR 1442245 | Zbl 0960.16038
[32] Sharma, R. K., Singh, A. B.: Unified extensions of strongly reversible rings and links with other classic ring theoretic properties. J. Indian Math. Soc., New Ser. 85 (2018), 434-448. DOI 10.18311/jims/2018/20986 | MR 3816380 | Zbl 1463.16047
[33] Sharma, R. K., Singh, A. B.: Zip property of skew Hurwitz series rings and modules. Serdica Math. J. 45 (2019), 35-54. MR 3971446
[34] Sharma, R. K., Singh, A. B.: Skew Hurwitz series rings and modules with Beachy-Blair conditions. Kragujevac J. Math. 47 (2023), 511-521. DOI 10.46793/KgJMat2304.511S | MR 4654453
[35] Singh, A. B., Dixit, V. N.: Unification of extensions of zip rings. Acta Univ. Sapientiae, Math. 4 (2012), 168-181. MR 3123260 | Zbl 1295.16015
[36] Stenström, B.: Rings of Quotients: An Introduction to Methods of Ring Theory. Die Grundlehren der mathematischen Wissenschaften 217. Springer, Berlin (1975). DOI 10.1007/978-3-642-66066-5 | MR 0389953 | Zbl 0296.16001
[37] Taft, E. J.: Hurwitz invertibility of linearly recursive sequences. Combinatorics, Graph Theory, and Computing Congressus Numerantium 73. Utilitas Mathematica, Winnipeg (1990), 37-40. MR 1041834 | Zbl 0694.16006
[38] Tominaga, H.: On $s$-unital rings. Math. J. Okayama Univ. 18 (1976), 117-134. MR 0453801 | Zbl 0335.16020
[39] Zelmanowitz, J. M.: The finite intersection property on annihilator right ideals. Proc. Am. Math. Soc. 57 (1976), 213-216. DOI 10.1090/S0002-9939-1976-0419512-6 | MR 0419512 | Zbl 0333.16014
Partner of
EuDML logo