Previous |  Up |  Next

Article

Keywords:
hypercyclicity; recurrent operator; left multiplication operator; right multiplication operator; tensor product; Banach ideal of operators
Summary:
Let $X$ be a Banach space, $\mathcal {B}(X)$ the algebra of bounded linear operators on $X$ and $(J, \|{\cdot }\|_{J})$ an admissible Banach ideal of $\mathcal {B}(X)$. For $T\in \mathcal {B}(X)$, let $L_{J, T}$ and $R_{J, T}\in \mathcal {B}(J)$ denote the left and right multiplication defined by $L_{J, T}(A)=TA$ and $R_{J, T}(A)=AT$, respectively. In this paper, we study the transmission of some concepts related to recurrent operators between $T\in \mathcal {B}(X)$, and their elementary operators $L_{J, T}$ and $R_{J, T}$. In particular, we give necessary and sufficient conditions for $L_{J, T}$ and $R_{J, T}$ to be sequentially recurrent. Furthermore, we prove that $L_{J, T}$ is recurrent if and only if $T\oplus T$ is recurrent on $X\oplus X$. Moreover, we introduce the notion of a mixing recurrent operator and we show that $L_{J, T}$ is mixing recurrent if and only if $T$ is mixing recurrent.
References:
[1] Akin, E.: Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions. Plenum Press, New York (1997). DOI 10.1007/978-1-4757-2668-8 | MR 1467479 | Zbl 0919.54033
[2] Amouch, M., Lakrimi, H.: Supercyclicity of multiplication on Banach ideal of operators. Bol. Soc. Parana. Mat. (3) 40 (2022), 11 pages. DOI 10.5269/bspm.52067 | MR 4417157
[3] Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics 179. Cambridge University Press, Cambridge (2009). DOI 10.1017/cbo9780511581113 | MR 2533318 | Zbl 1187.47001
[4] Birkhoff, G. D.: Surface transformations and their dynamical applications. Acta Math. 43 (1922), 1-119 \99999JFM99999 47.0985.03. DOI 10.1007/BF02401754 | MR 1555175
[5] Bonet, J., Martínez-Giménez, F., Peris, A.: Universal and chaotic multipliers on spaces of operators. J. Math. Anal. Appl. 297 (2004), 599-611. DOI 10.1016/j.jmaa.2004.03.073 | MR 2088683 | Zbl 1062.47011
[6] Bonilla, A., Grosse-Erdmann, K. G., López-Martínez, A., Peris, A.: Frequently recurrent operators. Available at https://arxiv.org/abs/2006.11428v1 (2020), 31 pages. MR 4489276
[7] Chan, K. C.: Hypercyclicity of the operator algebra for a separable Hilbert space. J. Oper. Theory 42 (1999), 231-244. MR 1716973 | Zbl 0997.47058
[8] K. C. Chan, R. D. Taylor, Jr.: Hypercyclic subspaces of a Banach space. Integral Equations Oper. Theory 41 (2001), 381-388. DOI 10.1007/BF01202099 | MR 1857797 | Zbl 0995.46014
[9] Costakis, G., Manoussos, A., Parissis, I.: Recurrent linear operators. Complex Anal. Oper. Theory 8 (2014), 1601-1643. DOI 10.1007/s11785-013-0348-9 | MR 3275437 | Zbl 1325.47019
[10] Costakis, G., Parissis, I.: Szemerédi's theorem, frequent hypercyclicity and multiple recurrence. Math. Scand. 110 (2012), 251-272. DOI 10.7146/math.scand.a-15207 | MR 2943720 | Zbl 1246.47003
[11] Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. M. B. Porter Lectures. Princeton University Press, Princeton (1981). DOI 10.1515/9781400855162 | MR 0603625 | Zbl 0459.28023
[12] Galán, V. J., Martínez-Giménez, F., Oprocha, P., Peris, A.: Product recurrence for weighted backward shifts. Appl. Math. Inf. Sci. 9 (2015), 2361-2365. MR 3358706
[13] Gilmore, C.: Dynamics of generalised derivations and elementary operators. Complex Anal. Oper. Theory 13 (2019), 257-274. DOI 10.1007/s11785-018-0774-9 | MR 3905592 | Zbl 7032879
[14] Gilmore, C., Saksman, E., Tylli, H.-O.: Hypercyclicity properties of commutator maps. Integral Equations Oper. Theory 87 (2017), 139-155. DOI 10.1007/s00020-016-2332-z | MR 3609241 | Zbl 6715520
[15] Gohberg, I. C., Krein, M. G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Translations of Mathematical Monographs 18. AMS, Providence (1969). DOI 10.1090/mmono/018 | MR 0246142 | Zbl 0181.13504
[16] Gottschalk, W. H., Hedlund, G. H.: Topological Dynamics. Colloquium Publications of the American Mathematical Society 36. AMS, Providence (1955). DOI 10.1090/coll/036 | MR 0074810 | Zbl 0067.15204
[17] Grivaux, S.: Hypercyclic operators, mixing operators, and the bounded steps problem. J. Oper. Theory 54 (2005), 147-168. MR 2168865 | Zbl 1104.47010
[18] Grosse-Erdmann, K.-G.: Universal families and hypercyclic operators. Bull. Am. Math. Soc. 36 (1999), 345-381. DOI 10.1090/S0273-0979-99-00788-0 | MR 1685272 | Zbl 0933.47003
[19] Grosse-Erdmann, K.-G., Manguillot, A. Peris: Linear Chaos. Universitext. Springer, Berlin (2011). DOI 10.1007/978-1-4471-2170-1 | MR 2919812 | Zbl 1246.47004
[20] Gupta, M., Mundayadan, A.: Supercyclicity in spaces of operators. Result. Math. 70 (2016), 95-107. DOI 10.1007/s00025-015-0463-1 | MR 3534995 | Zbl 1384.47003
[21] Martínez-Giménez, F., Peris, A.: Universality and chaos for tensor products of operators. J. Approximation Theory 124 (2003), 7-24. DOI 10.1016/S0021-9045(03)00118-7 | MR 2010778 | Zbl 1062.47014
[22] Petersson, H.: Hypercyclic conjugate operators. Integral Equations Oper. Theory 57 (2007), 413-423. DOI 10.1007/s00020-006-1459-8 | MR 2307819 | Zbl 1141.47005
[23] Poincaré, H.: Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13 (1890), 1-270 French \99999JFM99999 22.0907.01.
[24] Rolewicz, S.: On orbits of elements. Stud. Math. 32 (1969), 17-22. DOI 10.4064/sm-32-1-17-22 | MR 0241956 | Zbl 0174.44203
[25] Shapiro, J. H.: Notes on the dynamics of linear operators. Available at \def{ }\brokenlink{ https://users.math.msu.edu/users/shapiro/Pubvit/Downloads/LinDynamics/{LynDynamics.html}}
[26] Yin, Z., Wei, Y.: Recurrence and topological entropy of translation operators. J. Math. Anal. Appl. 460 (2018), 203-215. DOI 10.1016/j.jmaa.2017.11.046 | MR 3739900 | Zbl 6824859
[27] Yousefi, B., Rezaei, H.: Hypercyclicity on the algebra of Hilbert-Schmidt operators. Result. Math. 46 (2004), 174-180. DOI 10.1007/BF03322879 | MR 2093472 | Zbl 1080.47013
[28] Yousefi, B., Rezaei, H.: On the supercyclicity and hypercyclicity of the operator algebra. Acta. Math. Sin., Engl. Ser. 24 (2008), 1221-1232. DOI 10.1007/s10114-007-6601-2 | MR 2420891 | Zbl 1154.47004
Partner of
EuDML logo