Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
psi function; asymptotic expansion; complete monotonicity
Summary:
Let $p,q\in \mathbb {R}$\ with $p-q\geq 0$, $\sigma = \frac 12 ( p+q-1)$ and $s=\frac 12 ( 1-p+q)$, and let $$ \mathcal {D}_{m} ( x;p,q ) =\mathcal {D}_{0} ( x;p,q ) +\sum _{k=1}^{m}\frac {B_{2k} ( s) }{2k ( x+\sigma ) ^{2k}} , $$ where $$ \mathcal {D}_{0} ( x;p,q ) =\frac {\psi ( x+p ) +\psi ( x+q ) }{2}-\ln ( x+\sigma ) . $$ We establish the asymptotic expansion $$ \mathcal {D}_{0} ( x;p,q ) \sim -\sum _{n=1}^{\infty } \frac {B_{2n} ( s ) }{2n ( x+\sigma ) ^{2n}} \quad \text {as} \^^Mx\rightarrow \infty , $$ where $B_{2n} ( s ) $ stands for the Bernoulli polynomials. Further, we prove that the functions $( -1) ^{m}\mathcal {D}_{m} ( x;p,q )$ and $( -1) ^{m+1}\mathcal {D}_{m} ( x;p,q )$ are completely monotonic in $x$ on $( -\sigma ,\infty )$ for every $m\in \mathbb {N}_{0}$ if and only if $p-q\in [ 0, \tfrac 12 ]$ and $p-q=1$, respectively. This not only unifies the two known results but also yields some new results.
References:
[1] Abramowitz, M., (eds.), I. A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series 55. John Wiley, New York (1972). MR 0208798 | Zbl 0543.33001
[2] Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66 (1997), 373-389. DOI 10.1090/S0025-5718-97-00807-7 | MR 1388887 | Zbl 0854.33001
[3] Atanassov, R. D., Tsoukrovski, U. V.: Some properties of a class of logarithmically completely monotonic functions. C. R. Acad. Bulg. Sci. 41 (1988), 21-23 \99999MR99999 0939205 \goodbreak. MR 0939205 | Zbl 0658.26010
[4] Chen, C.-P., Paris, R. B.: Inequalities, asymptotic expansions and completely monotonic functions related to the gamma function. Appl. Math. Comput. 250 (2015), 514-529. DOI 10.1016/j.amc.2014.11.010 | MR 3285558 | Zbl 1328.33001
[5] Fields, J. L.: The uniform asymptotic expansion of a ratio of Gamma functions. Constructive Theory of Functions Publishing House of the Bulgarian Academy of Sciences, Sofia (1970), 171-176. MR 0399527 | Zbl 0263.33002
[6] Frenzen, C. L.: Error bounds for asymptotic expansions of the ratio of two gamma functions. SIAM J. Math. Anal. 18 (1987), 890-896. DOI 10.1137/0518067 | MR 0883576 | Zbl 0625.41022
[7] Luke, Y. L.: On the ratio of two gamma functions. Jñ\=an\=abha 9-10 (1980), 143-148. MR 0683706 | Zbl 0504.33001
[8] Olver, F. W. J., Lozier, D. W., Boisvert, R. F., (eds.), C. W. Clark: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010). DOI 10.1023/A:1022915830921 | MR 2723248 | Zbl 1198.00002
[9] Qi, F., Chen, C.-P.: A complete monotonicity property of the gamma function. J. Math. Anal. Appl. 296 (2004), 603-607. DOI 10.1016/j.jmaa.2004.04.026 | MR 2075188 | Zbl 1046.33001
[10] Schilling, R. L., Song, R., Vondraček, Z.: Bernstein functions: Theory and Applications. de Gruyter Studies in Mathematics 37. Walter de Gruyter, Berlin (2010). DOI 10.1515/9783110269338 | MR 2598208 | Zbl 1197.33002
[11] Tian, J.-F., Yang, Z.: Asymptotic expansions of Gurland's ratio and sharp bounds for their remainders. J. Math. Anal. Appl. 493 (2021), Article ID 124545, 19 pages. DOI 10.1016/j.jmaa.2020.124545 | MR 4144294 | Zbl 1450.33006
[12] Widder, D. V.: The Laplace Transform. Princeton Mathematical Series 6. Princeton University Press, Princeton (1941). MR 0005923 | Zbl 0063.08245
[13] Yang, Z.-H.: Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function. J. Math. Anal. Appl. 441 (2016), 549-564. DOI 10.1016/j.jmaa.2016.04.029 | MR 3491542 | Zbl 1336.33005
[14] Yang, Z.-H., Chu, Y.-M.: Jordan type inequalities for hyperbolic functions and their applications. J. Funct. Spaces 2015 (2015), Article ID 370979, 4 pages. DOI 10.1155/2015/370979 | MR 3321607 | Zbl 1323.26021
[15] Yang, Z.-H., Tian, J.-F., Ha, M.-H.: A new asymptotic expansion of a ratio of two gamma functions and complete monotonicity for its remainder. Proc. Am. Math. Soc. 148 (2020), 2163-2178. DOI 10.1090/proc/14917 | MR 4078101 | Zbl 1435.41034
[16] Yang, Z., Tian, J.-F.: Complete monotonicity of the remainder of the asymptotic series for the ratio of two gamma functions. J. Math. Anal. Appl. 517 (2023), Article ID 126649, 15 pages. DOI 10.1016/j.jmaa.2022.126649 | MR 4477953 | Zbl 07595153
Partner of
EuDML logo