Previous |  Up |  Next

Article

Title: Hall algebras of two equivalent extriangulated categories (English)
Author: Ruan, Shiquan
Author: Wang, Li
Author: Zhang, Haicheng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 74
Issue: 1
Year: 2024
Pages: 95-113
Summary lang: English
.
Category: math
.
Summary: For any positive integer $n$, let $A_n$ be a linearly oriented quiver of type $A$ with $n$ vertices. It is well-known that the quotient of an exact category by projective-injectives is an extriangulated category. We show that there exists an extriangulated equivalence between the extriangulated categories $\mathcal {M}_{n+1}$ and $\mathcal {F}_n$, where $\mathcal {M}_{n+1}$ and $\mathcal {F}_n$ are the two extriangulated categories corresponding to the representation category of $A_{n+1}$ and the morphism category of projective representations of $A_n$, respectively. As a by-product, the Hall algebras of $\mathcal {M}_{n+1}$ and $\mathcal {F}_n$ are isomorphic. As an application, we use the Hall algebra of $\mathcal {M}_{2n+1}$ to relate with the quantum cluster algebras of type $A_{2n}$. (English)
Keyword: extriangulated category
Keyword: extriangulated equivalence
Keyword: Hall algebra
Keyword: quantum cluster algebra
MSC: 17B37
MSC: 18E05
MSC: 18E10
idZBL: Zbl 07893369
idMR: MR4717824
DOI: 10.21136/CMJ.2023.0344-22
.
Date available: 2024-03-13T10:04:43Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152270
.
Reference: [1] Bautista, R.: The category of morphisms between projective modules.Commun. Algebra 32 (2004), 4303-4331. Zbl 1081.16025, MR 2102451, 10.1081/AGB-200034145
Reference: [2] Bennett-Tennenhaus, R., Shah, A.: Transport of structure in higher homological algebra.J. Algebra 574 (2021), 514-549. Zbl 1461.18004, MR 4213630, 10.1016/j.jalgebra.2021.01.019
Reference: [3] Berenstein, A., Zelevinsky, A.: Quantum cluster algebras.Adv. Math. 195 (2005), 405-455. Zbl 1124.20028, MR 2146350, 10.1016/j.aim.2004.08.003
Reference: [4] Caldero, P., Keller, B.: From triangulated categories to cluster algebras.Invent. Math. 172 (2008), 169-211. Zbl 1141.18012, MR 2385670, 10.1007/s00222-008-0111-4
Reference: [5] Chaio, C., Pratti, I., Souto-Salorio, M. J.: On sectional paths in a category of complexes of fixed size.Algebr. Represent. Theory 20 (2017), 289-311. Zbl 1393.16009, MR 3638350, 10.1007/s10468-016-9643-2
Reference: [6] Chen, X., Ding, M., Zhang, H.: The cluster multiplication theorem for acyclic quantum cluster algebras.(to appear) in Int. Math. Res. Not. MR 4675077, 10.1093/imrn/rnad172
Reference: [7] Ding, M., Xu, F., Zhang, H.: Acyclic quantum cluster algebras via Hall algebras of morphisms.Math. Z. 296 (2020), 945-968. Zbl 1509.17010, MR 4159816, 10.1007/s00209-020-02465-0
Reference: [8] Fomin, S., Zelevinsky, A.: Cluster algebras. I: Foundations.J. Am. Math. Soc. 15 (2002), 497-529. Zbl 1021.16017, MR 1887642, 10.1090/S0894-0347-01-00385-X
Reference: [9] Fu, C., Peng, L., Zhang, H.: Quantum cluster characters of Hall algebras revisited.Sel. Math., New Ser. 29 (2023), Article ID 4, 29 pages. Zbl 07612807, MR 4502761, 10.1007/s00029-022-00811-0
Reference: [10] Gorsky, M., Nakaoka, H., Palu, Y.: Positive and negative extensions in extriangulated categories.Available at https://arxiv.org/abs/2103.12482 (2021), 51 pages. 10.48550/arXiv.2103.12482
Reference: [11] Hubery, A.: From triangulated categories to Lie algebras: A theorem of Peng and Xiao.Trends in Representations Theory of Algebras and Related Topics Contemporary Mathematics 406. AMS, Providence (2006), 51-66. Zbl 1107.16021, MR 2258041, 10.1090/conm/406
Reference: [12] Nakaoka, H., Palu, Y.: Extriangulated categories, Hovey twin cotorsion pairs and model structures.Cah. Topol. Géom. Différ. Catég. 60 (2019), 117-193. Zbl 1451.18021, MR 3931945
Reference: [13] Ringel, C. M.: Hall algebras and quantum groups.Invent. Math. 101 (1990), 583-591. Zbl 0735.16009, MR 1062796, 10.1007/BF01231516
Reference: [14] Sheng, J., Xu, F.: Derived Hall algebras and lattice algebras.Algebra Colloq. 19 (2012), 533-538. Zbl 1250.18013, MR 2999262, 10.1142/S1005386712000399
Reference: [15] Toën, B.: Derived Hall algebras.Duke Math. J. 135 (2006), 587-615. Zbl 1117.18011, MR 2272977, 10.1215/S0012-7094-06-13536-6
Reference: [16] Wang, L., Wei, J., Zhang, H.: Hall algebras of extriangulated categories.J. Algebra 610 (2022), 366-390. Zbl 1502.18019, MR 4466102, 10.1016/j.jalgebra.2022.07.023
Reference: [17] Xiao, J., Xu, F.: Hall algebras associated to triangulated categories.Duke Math. J. 143 (2008), 357-373. Zbl 1168.18006, MR 2420510, 10.1215/00127094-2008-021
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo