[2] Bašić-Šiško, A., Dražić, I.:
Uniqueness of generalized solution to micropolar viscous real gas flow with homogeneous boundary conditions. Math. Methods Appl. Sci. 44 (2021), 4330-4341.
DOI 10.1002/mma.7032 |
MR 4235508 |
Zbl 1473.76044
[3] Bašić-Šiško, A., Dražić, I.:
Local existence for viscous reactive micropolar real gas flow and thermal explosion with homogeneous boundary conditions. J. Math. Anal. Appl. 509 (2022), Article ID 125988, 31 pages.
DOI 10.1016/j.jmaa.2022.125988 |
MR 4362867 |
Zbl 1509.35207
[4] Bašić-Šiško, A., Dražić, I., Simčić, L.:
One-dimensional model and numerical solution to the viscous and heat-conducting micropolar real gas flow with homogeneous boundary conditions. Math. Comput. Simul. 195 (2022), 71-87.
DOI 10.1016/j.matcom.2021.12.024 |
MR 4372809 |
Zbl 07487705
[5] Chang, S., Duan, R.:
The limits of coefficients of angular viscosity and microrotation viscosity to one-dimensional compressible Navier-Stokes equations for micropolar fluids model. J. Math. Anal. Appl. 516 (2022), Article ID 126462, 41 pages.
DOI 10.1016/j.jmaa.2022.126462 |
MR 4450883 |
Zbl 1504.35219
[12] Duan, R.:
Global strong solution for initial-boundary value problem of one-dimensional compressible micropolar fluids with density dependent viscosity and temperature dependent heat conductivity. Nonlinear Anal., Real World Appl. 42 (2018), 71-92.
DOI 10.1016/j.nonrwa.2017.12.006 |
MR 3773352 |
Zbl 1516.35330
[19] Mujaković, N.:
One-dimensional flow of a compressible viscous micropolar fluid: A local existence theorem. Glas. Mat., III. Ser. 33 (1998), 71-91.
MR 1652788 |
Zbl 0912.35135
[20] Mujaković, N.:
One-dimensional flow of a compressible viscous micropolar fluid: A global existence theorem. Glas. Mat., III. Ser. 33 (1998), 199-208.
MR 1695531 |
Zbl 0917.76004
[22] Mujaković, N.:
One-dimensional flow of a compressible viscous micropolar fluid: The Cauchy problem. Math. Commun. 10 (2005), 1-14.
MR 2239387 |
Zbl 1076.35103
[23] Mujaković, N.:
Uniqueness of a solution of the Cauchy problem for one-dimensional compressible viscous micropolar fluid model. Appl. Math. E-Notes 6 (2006), 113-118.
MR 2219158 |
Zbl 1154.76045
[24] Mujaković, N.:
Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A local existence theorem. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 53 (2007), 361-379.
DOI 10.1007/s11565-007-0023-z |
MR 2358235 |
Zbl 1180.35007
[25] Mujaković, N.:
Non-homogeneous boundary value problem for one-dimensional compressible viscous micropolar fluid model: A global existence theorem. Math. Inequal. Appl. 12 (2009), 651-662.
DOI 10.7153/mia-12-49 |
MR 2540984 |
Zbl 1178.35007
[27] Mujaković, N.:
The existence of a global solution for one dimensional compressible viscous micropolar fluid with non-homogeneous boundary conditions for temperature. Nonlinear Anal., Real World Appl. 19 (2014), 19-30.
DOI 10.1016/j.nonrwa.2014.02.006 |
MR 3206655 |
Zbl 1300.35100
[28] Mujaković, N., Črnjarić-Žic, N.:
Convergent finite difference scheme for 1D flow of compressible micropolar fluid. Int. J. Numer. Anal. Model. 12 (2015), 94-124.
MR 3286458 |
Zbl 1329.35251