[1] Ahn, H., Sun, K., Kim, K. P.:
Comparison of missing data imputation methods in time series forecasting. Computers Materials Continua 70 (2022), 767-779.
DOI
[2] Anava, O., Hazan, E., Zeevi, A.: International Conference on Machine Learning. Proc. Machine Learning Research, Lille 2015.
[3] Bashir, F., Wei, H. L.:
Handling missing data in multivariate time series using a vector autoregressive model-imputation (VAR-IM) algorithm. Neurocomputing 276 (2018), 23-30.
DOI
[4] Batista, G. E. A. P. A., Monard, M. C.:
An analysis of four missing data treatment methods for supervised learning. Appl. Artific. Intell. 17 (2003), 519-533.
DOI
[5] Bras, L. P., Menezes, J. C.:
Dealing with gene expression missing data. IEE Proceedings - Systems Biology, 153 (2006), 105-119.
DOI
[6] Brown, S., Tauler, R., Walczak, B.: Comprehensive Chemometrics: Chemical and Biochemical Data Analysis. (Second edition.). Elsevier, Smsterdam 2020.
[7] Choong, M. K., Charbit, M., Yan, H.:
Autoregressive-model-based missing value estimation for DNA microarray time series data. IEEE Trans. Inform. Technol. Biomedicine 13 (2009), 131-137.
DOI
[8] Dan, E. L., Dinşoreanu, M., Mureşan, R. C.: 2020 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). IEEE, London 2020.
[9] Dunsmuir, W., Robinson, P. M.:
Estimation of time series models in the presence of missing data. J. Amer. Statist. Assoc. 76 (1981), 560-568.
DOI
[10] Folch-Fortuny, A., Arteaga, F., Ferrer, A.:
Enabling network inference methods to handle missing data and outliers. BMC Bioinformatics 16 (2015), 1-12.
DOI
[11] Folch-Fortuny, A., Arteaga, F., Ferrer, A.:
PCA model building with missing data: New proposals and a comparative study. Chemometr. Intell. Labor. Systems 146 (2015), 77-88.
DOI
[12] Folch-Fortuny, A., Arteaga, F., Ferrer, A.:
Missing data imputation toolbox for MATLAB. Chemometr. Intell. Labor. Systems 154 (2016), 93-100.
DOI
[13] González-Martíneza, J. M., Noord, O. E. de, Ferrer, A.:
Multisynchro: a novel approach for batch synchronization in scenarios of multiple asynchronisms. J. Chemometr. 28 (2014), 462-475.
DOI
[14] Hui, D., Wan, S., Su, B, Katul, G., Monson, R., Luo, Y.:
Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations. Agricultur. Forest Meteorology 121 (2004), 93-111.
DOI
[15] Junger, W. L., Leon, A. Ponce de:
Imputation of missing data in time series for air pollutants. Atmosph. Environment 102 (2015), 96-104.
DOI
[16] Liu, S., Molenaar, P. C. M.:
iVAR: A program for imputing missing data in multivariate time series using vector autoregressive models. Behavior Res. Methods 46 (2014), 1138-1148.
DOI
[17] Magán-Carrión, R., Pulido-Pulido, F., Camacho, J., García-Teodoro, P.:
Tampered data recovery in WSNs through dynamic PCA and variable routing strategies. J. Commun. 8 (2013), 738-750.
DOI
[18] Makridakis, S., Wheelwright, S. C., Hyndman, R. J.: Forecasting: Methods and Applications. (Third edition.). Wiley, India 2008.
[19] Montgomery, D. C.: Statistical Quality Control. (Sixth edition.). Wiley, New York 2005.
[20] Murad, H., Dankner, R., Berlin, A., Olmer, L., Freedman, L. S.:
Imputing missing time-dependent covariate values for the discrete time Cox model. Statist. Methods Medical Res. 29 (2020), 2074-2086.
DOI |
MR 4128979
[21] Neves, D. T., Alves, J., Naik, M. G., Proenca, A. J., Prasser, F.:
From missing data imputation to data generation. J. Comput. Sci. 61 (2022), 101640.
DOI
[22] Noor, N. M., Bakri-Abdullah, M. M. Al, Yahaya, A. Shukri, Ramli, N. A.: Comparison of Linear Interpolation Method and Mean Method to Replace the Missing Values in Environmental Data Set. Trans Tech Publications, Switzerland 2014.
[23] Pedreschi, R., Hertog, M. L. A. T. M., Carpentier, S. C., Lammertyn, J., Robben, J., Noben, J. P., Panis, B., Swennen, R., Nicola, B. M.:
Treatment of missing values for multivariate statistical analysis of gel-based proteomics data. Proteomics 29 (2008), 1371-1383.
DOI
[24] Quevedo, J., Puig, V., Cembrano, G., Aguilar, J., Isaza, C., Saporta, D., Benito, G., Hedo, M., Molina, A.:
Estimating missing and false data in flow meters of a water distribution network. IFAC Proc. Vol. 39 (2006), 1181-1186.
DOI
[25] Sun, Y., Li, J., Xu, Y., Zhang, T., Wang, X.:
Deep learning versus conventional methods for missing data imputation: A review and comparative study. Expert Systems Appl. 227 (2023), 120-201.
DOI |
MR 4523179
[26] Zarzo, M., Martí, P.:
Modeling the variability of solar radiation data among weather stations by means of principal components analysis. Appl. Energy 88 (2011), 2775-2784.
DOI
[27] Zhang, Z.:
Missing data imputation: focusing on single imputation. AME Publ. 4 (2016), 1-8.
DOI