Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
thin viscoelastic plate; Norton or Tresca friction; transient problem; multivalued operator; nonlinear semigroup of operators; Trotter's theory of convergence of semi-groups
Summary:
We study the dynamic response of a thin viscoelastic plate made of a nonlinear Kelvin-Voigt material in bilateral contact with a rigid body along a part of its lateral boundary with Norton or Tresca friction. We opt for a direct use of the Trotter theory of convergence of semi-groups of operators acting on variable spaces. Depending on the various relative behaviors of the physical and geometrical data of the problem, the asymptotic analysis of its unique solution leads to different limit models whose properties are detailed. We highlight the appearance of an additional state variable that allows us to write these limit systems of equations in the same form as the genuine problem.
References:
[1] Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992), 1482-1518. DOI 10.1137/0523084 | MR 1185639 | Zbl 0770.35005
[2] Bobrowski, A.: Convergence of One-Parameter Operator Semi-Groups in Models of Mathematical Biology and Elsewhere. New Mathematical Monographs 30. Cambridge University Press, Cambridge (2016). DOI 10.1017/CBO9781316480663 | MR 3526064 | Zbl 1345.47001
[3] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies 5. North-Holland, Amsterdam (1973), French. DOI 10.1016/s0304-0208(08)x7125-71 | MR 0348562 | Zbl 0252.47055
[4] Ciarlet, P. G.: Mathematical Elasticity. Vol. 2. Theory of Plates. Studies in Mathematics and Its Applications 27. North Holland, Amsterdam (1997). MR 1477663 | Zbl 0888.73001
[5] Francfort, G., Leguillon, D., Suquet, P.: Homogénéisation de milieux viscoélastiques linéaires de Kelvin-Voigt. C. R. Acad. Sci., Paris, Sér. I 296 (1983), 287-290 French. MR 0693795 | Zbl 0534.73031
[6] Gaudiello, A., Monneau, R., Mossino, J., Murat, F., Sili, A.: Junction of elastic plates and beams. ESAIM, Control Optim. Calc. Var. 13 (2007), 419-457. DOI 10.1051/cocv:2007036 | MR 2329170 | Zbl 1133.35322
[7] Iosifescu, O., Licht, C.: Transient response of a thin linearly elastic plate with Norton or Tresca friction. Asymptotic Anal. 128 (2022), 555-570. DOI 10.3233/ASY-211717 | MR 4438595 | Zbl 1504.35536
[8] Iosifescu, O., Licht, C., Michaille, G.: Nonlinear boundary conditions in Kirchhoff-Love plate theory. J. Elasticity 96 (2009), 57-79. DOI 10.1007/s10659-009-9198-0 | MR 2504825 | Zbl 1273.74172
[9] Licht, C.: Thin linearly viscoelastic Kelvin-Voigt plates. C. R., Méc., Acad. Sci. Paris 341 (2013), 697-700. DOI 10.1016/j.crme.2013.06.005
[10] Licht, C., Weller, T.: Approximation of semi-groups in the sense of Trotter and asymptotic mathematical modeling in physics of continuous media. Discrete Contin. Dyn. Syst., Ser. S 12 (2019), 1709-1741. DOI 10.3934/dcdss.2019114 | MR 3984717 | Zbl 1462.82030
[11] Licht, C., Weller, T.: Asymptotic analysis of a thin linearly elastic plate equipped with a periodic distribution of stiffeners. C. R., Méc., Acad. Sci. Paris 347 (2019), 555-560. DOI 10.1016/j.crme.2019.07.001
[12] Migórski, S., Ochal, A., Sofonea, M.: Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 687-705. DOI 10.3934/dcdsb.2011.15.687 | MR 2774134 | Zbl 1287.74026
[13] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. DOI 10.1137/0520043 | MR 0990867 | Zbl 0688.35007
[14] Terapabkajornded, Y., Orankitjaroen, S., Licht, C.: Asymptotic model of linearly viscoelastic Kelvin-Voigt type plates via Trotter theory. Adv. Difference Equ. 2019 (2019), Article ID 186, 9 pages. DOI 10.1186/s13662-019-2104-6 | MR 3950287 | Zbl 1459.74023
[15] Trotter, H. F.: Approximation of semi-groups of operators. Pac. J. Math. 8 (1958), 887-919. DOI 10.2140/pjm.1958.8.887 | MR 0103420 | Zbl 0099.10302
[16] Zhikov, V. V., Pastukhova, S. E.: On the Trotter-Kato theorem in a variable space. Funct. Anal. Appl. 41 (2007), 264-270. DOI 10.1007/s10688-007-0024-9 | MR 2411603 | Zbl 1158.47027
Partner of
EuDML logo