[4] Ciarlet, P. G.:
Mathematical Elasticity. Vol. 2. Theory of Plates. Studies in Mathematics and Its Applications 27. North Holland, Amsterdam (1997).
MR 1477663 |
Zbl 0888.73001
[5] Francfort, G., Leguillon, D., Suquet, P.:
Homogénéisation de milieux viscoélastiques linéaires de Kelvin-Voigt. C. R. Acad. Sci., Paris, Sér. I 296 (1983), 287-290 French.
MR 0693795 |
Zbl 0534.73031
[6] Gaudiello, A., Monneau, R., Mossino, J., Murat, F., Sili, A.:
Junction of elastic plates and beams. ESAIM, Control Optim. Calc. Var. 13 (2007), 419-457.
DOI 10.1051/cocv:2007036 |
MR 2329170 |
Zbl 1133.35322
[10] Licht, C., Weller, T.:
Approximation of semi-groups in the sense of Trotter and asymptotic mathematical modeling in physics of continuous media. Discrete Contin. Dyn. Syst., Ser. S 12 (2019), 1709-1741.
DOI 10.3934/dcdss.2019114 |
MR 3984717 |
Zbl 1462.82030
[11] Licht, C., Weller, T.:
Asymptotic analysis of a thin linearly elastic plate equipped with a periodic distribution of stiffeners. C. R., Méc., Acad. Sci. Paris 347 (2019), 555-560.
DOI 10.1016/j.crme.2019.07.001