Previous |  Up |  Next

Article

Title: Homogenization of monotone parabolic problems with an arbitrary number of spatial and temporal scales (English)
Author: Danielsson, Tatiana
Author: Flodén, Liselott
Author: Johnsen, Pernilla
Author: Olsson Lindberg, Marianne
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 1
Year: 2024
Pages: 1-24
Summary lang: English
.
Category: math
.
Summary: We prove a general homogenization result for monotone parabolic problems with an arbitrary number of microscopic scales in space as well as in time, where the scale functions are not necessarily powers of the scale parameter $\varepsilon $. The main tools for the homogenization procedure are multiscale convergence and very weak multiscale convergence, both adapted to evolution problems. (English)
Keyword: homogenization
Keyword: parabolic
Keyword: monotone
Keyword: two-scale convergence
Keyword: multiscale convergence
Keyword: very weak multiscale convergence
MSC: 35B27
idZBL: Zbl 07830496
idMR: MR4709331
DOI: 10.21136/AM.2023.0269-22
.
Date available: 2024-02-26T10:53:54Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/152248
.
Reference: [1] Allaire, G.: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 (1992), 1482-1518. Zbl 0770.35005, MR 1185639, 10.1137/0523084
Reference: [2] Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation.Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. Zbl 0866.35017, MR 1386865, 10.1017/S0308210500022757
Reference: [3] Amar, M., Andreucci, D., Bellaveglia, D.: The time-periodic unfolding operator and applications to parabolic homogenization.Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 28 (2017), 663-700. Zbl 1383.35015, MR 3729583, 10.4171/RLM/781
Reference: [4] Amar, M., Andreucci, D., Gianni, R., Timofte, C.: Homogenization results for a class of parabolic equations with a non-local interface condition via time-periodic unfolding.NoDEA, Nonlinear Differ. Equ. Appl. 26 (2019), Article ID 52, 28 pages. Zbl 1435.35035, MR 4029530, 10.1007/s00030-019-0592-4
Reference: [5] Bensoussan, A., Lions, J.-L., Papanicoloau, G.: Asymptotic Analysis for Periodic Structures.Studies in Mathematics and Its Applications 5. North-Holland Publishing, Amsterdam (1978). Zbl 0404.35001, MR 0503330, 10.1016/s0168-2024(08)x7015-8
Reference: [6] Cioranescu, D., Donato, P.: An Introduction to Homogenization.Oxford Lecture Series in Mathematics and Its Applications 17. Oxford University Press, New York (1999). Zbl 0939.35001, MR 1765047
Reference: [7] Danielsson, T., Johnsen, P.: Homogenization of linear parabolic equations with three spatial and three temporal scales for certain matchings between the microscopic scales.Math. Bohem. 146 (2021), 483-511. Zbl 1499.35049, MR 4336552, 10.21136/MB.2021.0087-19
Reference: [8] Evans, L. C.: The perturbed test function method for viscosity solutions of nonlinear PDE.Proc. R. Soc. Edinb., ASect. A 111 (1989), 359-375. Zbl 0679.35001, MR 1007533, 10.1017/S0308210500018631
Reference: [9] Evans, L. C.: Periodic homogenisation of certain fully nonlinear partial differential equations.Proc. R. Soc. Edinb., Sect. A 120 (1992), 245-265. Zbl 0796.35011, MR 1159184, 10.1017/S0308210500032121
Reference: [10] Flodén, L., Holmbom, A., Olsson, M., Persson, J.: Very weak multiscale convergence.Appl. Math. Lett. 23 (2010), 1170-1173. Zbl 1198.35023, MR 2665589, 10.1016/j.aml.2010.05.005
Reference: [11] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: Two-scale convergence: Some remarks and extensions.Pure Appl. Math. Q. 9 (2013), 461-486. Zbl 1288.35041, MR 3138471, 10.4310/PAMQ.2013.v9.n3.a4
Reference: [12] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: Homogenization of parabolic equations with an arbitrary number of scales in both space and time.J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. Zbl 1406.35140, MR 3176810, 10.1155/2014/101685
Reference: [13] Flodén, L., Olsson, M.: Reiterated homogenization of some linear and nonlinear monotone parabolic operators.Can. Appl. Math. Q. 14 (2006), 149-183. Zbl 1142.35331, MR 2302654
Reference: [14] Flodén, L., Olsson, M.: Homogenization of some parabolic operators with several time scales.Appl. Math., Praha 52 (2007), 431-446. Zbl 1164.35315, MR 2342599, 10.1007/s10492-007-0025-2
Reference: [15] Holmbom, A.: Homogenization of parabolic equations: An alternative approach and some corrector-type results.Appl. Math., Praha 42 (1997), 321-343. Zbl 0898.35008, MR 1467553, 10.1023/A:1023049608047
Reference: [16] Kufner, A., John, O., Fučík, S.: Function Spaces.Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis 3. Noordhoff, Leyden (1977). Zbl 0364.46022, MR 0482102
Reference: [17] Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence.Int. J. Pure Appl. Math. 2 (2002), 35-86. Zbl 1061.35015, MR 1912819
Reference: [18] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 (1989), 608-623. Zbl 0688.35007, MR 0990867, 10.1137/0520043
Reference: [19] Nguetseng, G., Woukeng, J. L.: Deterministic homogenization of parabolic monotone operators with time dependent coefficients.Electron. J. Differ. Equ. 2004 (2004), Article ID 82, 23 pages. Zbl 1058.35025, MR 2075421
Reference: [20] Nguetseng, G., Woukeng, J. L.: $\Sigma$-convergence of nonlinear parabolic operators.Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 968-1004. Zbl 1116.35011, MR 2288445, 10.1016/j.na.2005.12.035
Reference: [21] Persson, J.: Homogenization of monotone parabolic problems with several temporal scales.Appl. Math., Praha 57 (2012), 191-214. Zbl 1265.35018, MR 2984600, 10.1007/s10492-012-0013-z
Reference: [22] Persson, J.: Selected Topics in Homogenization: Doctoral Thesis.Mid Sweden University, Østersund (2012).
Reference: [23] Svanstedt, N.: $G$-convergence of parabolic operators.Nonlinear Anal., Theory Methods Appl. 36 (1999), 807-843. Zbl 0933.35020, MR 1682689, 10.1016/S0362-546X(97)00532-4
Reference: [24] Svanstedt, N., Wellander, N., Wyller, J.: A numerical algorithm for nonlinear parabolic equations with highly oscillating coefficients.Numer. Methods Partial Differ. Equations 12 (1996), 423-440. Zbl 0859.65105, MR 1396465, 10.1002/(SICI)1098-2426(199607)12:4<423::AID-NUM2>3.0.CO;2-O
Reference: [25] Svanstedt, N., Woukeng, J. L.: Periodic homogenization of strongly nonlinear reactiondiffusion equations with large reaction terms.Appl. Anal. 92 (2013), 1357-1378. Zbl 1271.35006, MR 3169106, 10.1080/00036811.2012.678334
Reference: [26] Woukeng, J. L.: Periodic homogenization of nonlinear non-monotone parabolic operators with three time scales.Ann. Mat. Pura Appl. (4) 189 (2010), 357-379. Zbl 1213.35067, MR 2657414, 10.1007/s10231-009-0112-y
Reference: [27] Woukeng, J. L.: $\Sigma$-convergence and reiterated homogenization of nonlinear parabolic operators.Commun. Pure Appl. Anal. 9 (2010), 1753-1789. Zbl 1213.35068, MR 2684060, 10.3934/cpaa.2010.9.1753
Reference: [28] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B. Nonlinear Monotone Operators.Springer, New York (1990). Zbl 0684.47029, MR 1033498, 10.1007/978-1-4612-0981-2
Reference: [29] Zhikov, V. V.: On an extension of the method of two-scale convergence and its applications.Sb. Math. 191 (2000), 973-1014. Zbl 0969.35048, MR 1809928, 10.1070/SM2000v191n07ABEH000491
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo