[1] Aşıci, E.:
On the constructions of t-norms and t-conorms on some special classes of bounded lattices. Kybernetika 57 (2021), 352-371.
DOI |
MR 4273580
[2] Aşıcı, E., Mesiar, R.:
On the direct product of uninorms on bounded lattices. Kybernetika 57 (2021), 989-1004.
DOI |
MR 4376872
[3] Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Berlin 2007.
[4] Benítez, J. M., Castro, J. L., Requena, I.:
Are artificial neural networks black boxes?. IEEE Trans. Neural Netw. 8 (1997), 1156-1163.
DOI
[5] Birkhoff, G.:
Lattice Theory. American Mathematical Society Colloquium Publishers, Providence 1967.
MR 0227053 |
Zbl 0537.06001
[6] Bodjanova, S., Kalina, M.:
Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica 2014.
DOI
[7] Bodjanova, S., Kalina, M.:
Uninorms on bounded lattices - recent development. In: IWIFSGN 2017, EUSFLAT 2017, AISC, vol. 641 J. Kacprzyk et al. eds. Springer, Cham, 2018, pp. 224-234.
DOI
[8] Bodjanova, S., Kalina, M.:
Uninorms on bounded lattices with given underlying operations. In: AGOP 2019, AISC, vol. 981 R. Halaś et al. eds. Springer, Cham, 2019, pp. 183-194.
DOI
[10] Çayli, G. D.:
New methods to construct uninorms on bounded lattices. Int. J. Approx. Reason. 115 (2019), 254-264.
DOI |
MR 4018632
[11] Çayli, G. D.:
Construction methods for idempotent nullnorms on bounded lattices. Appl. Math. Comput. 366 (2020), 124746.
DOI |
MR 4011595
[12] Çayli, G. D.:
Uninorms on bounded lattices with the underlying t-norms and t-conorms. Fuzzy Sets Syst. 395 (2020), 107-129.
DOI |
MR 4109064
[13] Çayli, G. D.:
On generating of t-norms and t-conorms on bounded lattices. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 28 (2020), 807-835.
DOI |
MR 4155937
[14] Çayli, G. D.:
New construction approaches of uninorms on bounded lattices. Int. J. Gen. Syst. 50 (2021), 139-158.
DOI |
MR 4222196
[15] Çayli, G. D., Karaçal, F., Mesiar, R.:
On internal and locally internal uninorms on bounded lattices. Int. J. Gen. Syst. 48 (2019), 235-259.
DOI |
MR 3904571
[16] Dan, Y., Hu, B. Q., Qiao, J.:
New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209.
DOI |
MR 3947797
[17] Dan, Y., Hu, B. Q.:
A new structure for uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 77-94.
DOI |
MR 4073387
[18] Baets, B. De:
Idempotent uninorms. European J. Oper. Res. 118 (1999), 631-642.
DOI |
Zbl 1178.03070
[19] Baets, B. De, Fodor, J., Ruiz-Aguilera, D., Torrens, J.:
Idempotent uninorms on finite ordinal scales. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 17 (2009), 1-14.
DOI |
MR 2514519 |
Zbl 1178.03070
[20] Drewniak, J., Drygaś, P.:
On a class of uninorms. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10 (2002), 5-10.
DOI |
MR 1962665
[21] Drossos, C. A.:
Generalized t-norm structures. Fuzzy Sets Syst. 104 (1999), 53-59.
DOI |
MR 1685809
[22] Drossos, C. A., Navara, M.: Generalized t-conorms and closure operators. In: Proc. EUFIT '96, Aachen, 1996, pp. 22-26.
[24] Drygaś, P., Rak, E.:
Distributivity equation in the class of 2-uninorms. Fuzzy Sets Syst. 291 (2016), 82-97.
DOI |
MR 3463655
[25] Dubois, D., Prade, H.:
Fundamentals of Fuzzy Sets. Kluwer Academic Publisher, Boston 2000.
MR 1890229
[26] Dubois, D., Prade, H.:
A review of fuzzy set aggregation connectives. Inf. Sci. 36 (1985), 85-121.
DOI |
MR 0813766 |
Zbl 0582.03040
[28] Ertuğrul, Ü., Kesicioğlu, M., Karaçal, F.:
Construction methods for uni-nullnorms and null-uninorms on bounded lattice. Kybernetika 55 (2019), 994-1015.
DOI |
MR 4077141
[29] Everett, C. J.:
Closure operators, Galois theory in lattices. Trans. Am. Math. Soc. 55 (1944), 514-525.
DOI |
MR 0010556
[30] Fodor, J., Yager, R. R., Rybalov, A.:
Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 5 (1997), 411-427.
DOI |
MR 1471619 |
Zbl 1232.03015
[31] González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.:
On the choice of the pair conjunction-implication into the fuzzy morphological edge detector. IEEE Trans. Fuzzy Syst. 23 (2015), 872-884.
DOI
[32] He, P., Wang, X. P.:
Constructing uninorms on bounded lattices by using additive generators. Int. J. Approx. Reason. 136 (2021), 1-13.
DOI |
MR 4270087
[33] Homenda, W., Jastrzebska, A., Pedrycz, W.:
Multicriteria decision making inspired by human cognitive processes. Appl. Math. Comput. 290 (2016), 392-411.
DOI |
MR 3523438
[34] Hua, X. J., Ji, W.:
Uninorms on bounded lattices constructed by t-norms and t-subconorms. Fuzzy Sets Syst. 427 (2022), 109-131.
DOI |
MR 4343692
[35] Karaçal, F., Ertuğrul, Ü., Kesicioğlu, M.:
An extension method for t-norms on subintervals to t-norms on bounded lattices. Kybernetika 55 (2019), 976-993.
DOI |
MR 4077140
[36] Karaçal, F., Mesiar, R.:
Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43.
DOI |
MR 3291484
[37] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[38] Klement, E. P., Mesiar, R., Pap, E.:
Triangular norms. Position paper I: Basic analytical and algebraic properties. Fuzzy Sets Syst. 143 (2004), 5-26.
DOI |
MR 2060270
[39] Klement, E. P., Mesiar, R., Pap, E.:
Triangular norms. Position paper II: General constructions and parametrized families. Fuzzy Sets Syst. 145 (2004), 411-438.
DOI |
MR 2075838
[40] Medina, J.:
Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices. Fuzzy Sets Syst. 202 (2012), 75-88.
DOI |
MR 2934787
[42] Metcalfe, G., Montagna, F.:
Substructural fuzzy logics. J. Symb. Log. 72 (2007), 834-864.
DOI |
MR 2354903
[43] Ouyang, Y., Zhang, H. P.:
Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106.
DOI |
MR 4109063
[44] Sun, X. R., Liu, H. W.:
Further characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 427 (2022), 96-108.
DOI |
MR 4343691
[45] Saminger, S.:
On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syts. 157 (2006), 1403-1416.
DOI |
MR 2226983 |
Zbl 1099.06004
[46] Schweizer, B., Sklar, A.:
Probabilistic Metric Spaces. Elsevier North-Holland, New York 1983.
MR 0790314 |
Zbl 0546.60010
[47] Schweizer, B., Sklar, A.:
Associative functions and statistical triangular inequalities. Publ. Math. 8 (1961), 169-186.
MR 0132939
[48] Takács, M.: Uninorm-based models for FLC systems. J. Intell. Fuzzy Syst. 19 (2008), 65-73.
[49] Yager, R. R.:
Aggregation operators and fuzzy systems modelling. Fuzzy Sets Syst. 67 (1994), 129-145.
DOI |
MR 1302575
[51] Yager, R. R.:
Uninorms in fuzzy systems modelling. Fuzzy Sets Syst. 122 (2001), 167-175.
DOI |
MR 1839955
[52] Yager, R. R.:
Defending against strategic manipulation in uninorm-based multi-agent decision making. Fuzzy Sets Syst. 140 (2003), 331-339.
MR 1925395 |
Zbl 0998.90046
[53] Zhao, B., Wu, T.:
Some further results about uninorms on bounded lattices. Int. J. Approx. Reason. 130 (2021), 22-49.
DOI |
MR 4188974