Previous |  Up |  Next

Article

Keywords:
bounded lattice; closure operator; uninorm; interior operator; T-norm; T-conorm
Summary:
Uninorms on bounded lattices have been recently a remarkable field of inquiry. In the present study, we introduce two novel construction approaches for uninorms on bounded lattices with a neutral element, where some necessary and sufficient conditions are required. These constructions exploit a t-norm and a closure operator, or a t-conorm and an interior operator on a bounded lattice. Some illustrative examples are also included to help comprehend the newly added classes of uninorms.
References:
[1] Aşıci, E.: On the constructions of t-norms and t-conorms on some special classes of bounded lattices. Kybernetika 57 (2021), 352-371. DOI  | MR 4273580
[2] Aşıcı, E., Mesiar, R.: On the direct product of uninorms on bounded lattices. Kybernetika 57 (2021), 989-1004. DOI  | MR 4376872
[3] Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Berlin 2007.
[4] Benítez, J. M., Castro, J. L., Requena, I.: Are artificial neural networks black boxes?. IEEE Trans. Neural Netw. 8 (1997), 1156-1163. DOI 
[5] Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publishers, Providence 1967. MR 0227053 | Zbl 0537.06001
[6] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica 2014. DOI 
[7] Bodjanova, S., Kalina, M.: Uninorms on bounded lattices - recent development. In: IWIFSGN 2017, EUSFLAT 2017, AISC, vol. 641 J. Kacprzyk et al. eds. Springer, Cham, 2018, pp. 224-234. DOI 
[8] Bodjanova, S., Kalina, M.: Uninorms on bounded lattices with given underlying operations. In: AGOP 2019, AISC, vol. 981 R. Halaś et al. eds. Springer, Cham, 2019, pp. 183-194. DOI 
[9] Çayli, G. D.: Alternative approaches for generating uninorms on bounded lattices. Inf. Sci. 488 (2019), 111-139. DOI 10.1016/j.ins.2019.03.007 | MR 3924420
[10] Çayli, G. D.: New methods to construct uninorms on bounded lattices. Int. J. Approx. Reason. 115 (2019), 254-264. DOI  | MR 4018632
[11] Çayli, G. D.: Construction methods for idempotent nullnorms on bounded lattices. Appl. Math. Comput. 366 (2020), 124746. DOI  | MR 4011595
[12] Çayli, G. D.: Uninorms on bounded lattices with the underlying t-norms and t-conorms. Fuzzy Sets Syst. 395 (2020), 107-129. DOI  | MR 4109064
[13] Çayli, G. D.: On generating of t-norms and t-conorms on bounded lattices. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 28 (2020), 807-835. DOI  | MR 4155937
[14] Çayli, G. D.: New construction approaches of uninorms on bounded lattices. Int. J. Gen. Syst. 50 (2021), 139-158. DOI  | MR 4222196
[15] Çayli, G. D., Karaçal, F., Mesiar, R.: On internal and locally internal uninorms on bounded lattices. Int. J. Gen. Syst. 48 (2019), 235-259. DOI  | MR 3904571
[16] Dan, Y., Hu, B. Q., Qiao, J.: New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209. DOI  | MR 3947797
[17] Dan, Y., Hu, B. Q.: A new structure for uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 77-94. DOI  | MR 4073387
[18] Baets, B. De: Idempotent uninorms. European J. Oper. Res. 118 (1999), 631-642. DOI  | Zbl 1178.03070
[19] Baets, B. De, Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 17 (2009), 1-14. DOI  | MR 2514519 | Zbl 1178.03070
[20] Drewniak, J., Drygaś, P.: On a class of uninorms. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10 (2002), 5-10. DOI  | MR 1962665
[21] Drossos, C. A.: Generalized t-norm structures. Fuzzy Sets Syst. 104 (1999), 53-59. DOI  | MR 1685809
[22] Drossos, C. A., Navara, M.: Generalized t-conorms and closure operators. In: Proc. EUFIT '96, Aachen, 1996, pp. 22-26.
[23] Drygaś, P.: On the structure of continuous uninorms. Kybernetika 43 (2007), 183-196. MR 2343394 | Zbl 1132.03349
[24] Drygaś, P., Rak, E.: Distributivity equation in the class of 2-uninorms. Fuzzy Sets Syst. 291 (2016), 82-97. DOI  | MR 3463655
[25] Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Kluwer Academic Publisher, Boston 2000. MR 1890229
[26] Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Inf. Sci. 36 (1985), 85-121. DOI  | MR 0813766 | Zbl 0582.03040
[27] Engelking, R.: General Topology. Heldermann Verlag, Berlin 1989. MR 1039321 | Zbl 1281.54001
[28] Ertuğrul, Ü., Kesicioğlu, M., Karaçal, F.: Construction methods for uni-nullnorms and null-uninorms on bounded lattice. Kybernetika 55 (2019), 994-1015. DOI  | MR 4077141
[29] Everett, C. J.: Closure operators, Galois theory in lattices. Trans. Am. Math. Soc. 55 (1944), 514-525. DOI  | MR 0010556
[30] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 5 (1997), 411-427. DOI  | MR 1471619 | Zbl 1232.03015
[31] González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the choice of the pair conjunction-implication into the fuzzy morphological edge detector. IEEE Trans. Fuzzy Syst. 23 (2015), 872-884. DOI 
[32] He, P., Wang, X. P.: Constructing uninorms on bounded lattices by using additive generators. Int. J. Approx. Reason. 136 (2021), 1-13. DOI  | MR 4270087
[33] Homenda, W., Jastrzebska, A., Pedrycz, W.: Multicriteria decision making inspired by human cognitive processes. Appl. Math. Comput. 290 (2016), 392-411. DOI  | MR 3523438
[34] Hua, X. J., Ji, W.: Uninorms on bounded lattices constructed by t-norms and t-subconorms. Fuzzy Sets Syst. 427 (2022), 109-131. DOI  | MR 4343692
[35] Karaçal, F., Ertuğrul, Ü., Kesicioğlu, M.: An extension method for t-norms on subintervals to t-norms on bounded lattices. Kybernetika 55 (2019), 976-993. DOI  | MR 4077140
[36] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. DOI  | MR 3291484
[37] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. MR 1790096 | Zbl 1087.20041
[38] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms. Position paper I: Basic analytical and algebraic properties. Fuzzy Sets Syst. 143 (2004), 5-26. DOI  | MR 2060270
[39] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms. Position paper II: General constructions and parametrized families. Fuzzy Sets Syst. 145 (2004), 411-438. DOI  | MR 2075838
[40] Medina, J.: Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices. Fuzzy Sets Syst. 202 (2012), 75-88. DOI  | MR 2934787
[41] Menger, K.: Statistical metrics. PNAS 8 (1942), 535-537. DOI 10.1073/pnas.28.12.535 | MR 0007576 | Zbl 0063.03886
[42] Metcalfe, G., Montagna, F.: Substructural fuzzy logics. J. Symb. Log. 72 (2007), 834-864. DOI  | MR 2354903
[43] Ouyang, Y., Zhang, H. P.: Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106. DOI  | MR 4109063
[44] Sun, X. R., Liu, H. W.: Further characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 427 (2022), 96-108. DOI  | MR 4343691
[45] Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syts. 157 (2006), 1403-1416. DOI  | MR 2226983 | Zbl 1099.06004
[46] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier North-Holland, New York 1983. MR 0790314 | Zbl 0546.60010
[47] Schweizer, B., Sklar, A.: Associative functions and statistical triangular inequalities. Publ. Math. 8 (1961), 169-186. MR 0132939
[48] Takács, M.: Uninorm-based models for FLC systems. J. Intell. Fuzzy Syst. 19 (2008), 65-73.
[49] Yager, R. R.: Aggregation operators and fuzzy systems modelling. Fuzzy Sets Syst. 67 (1994), 129-145. DOI  | MR 1302575
[50] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. DOI  | MR 1389951 | Zbl 0871.04007
[51] Yager, R. R.: Uninorms in fuzzy systems modelling. Fuzzy Sets Syst. 122 (2001), 167-175. DOI  | MR 1839955
[52] Yager, R. R.: Defending against strategic manipulation in uninorm-based multi-agent decision making. Fuzzy Sets Syst. 140 (2003), 331-339. MR 1925395 | Zbl 0998.90046
[53] Zhao, B., Wu, T.: Some further results about uninorms on bounded lattices. Int. J. Approx. Reason. 130 (2021), 22-49. DOI  | MR 4188974
Partner of
EuDML logo