[1] Bush, P., Lahti, P. J., Mittelstadt, P.:
The quantum theory of measurement. In: The Quantum Theory of Measurement. Lecture Notes in Physics Monographs, Vol 2. Springer, Berlin, Heidelberg 1991.
DOI |
MR 1176754
[2] Bush, P., Grabowski, M., Lahti, P. J.:
Operational Quantum Physics. Springer-Verlag, Berlin 1995.
DOI |
MR 1356220
[3] Dvurečenskij, A., Pulmannová, S.:
New Trends in Quantum Structures. Kluwer Academic Publ./Ister Science, Dordrecht-Boston-London/Bratislava 2000.
DOI |
MR 1861369 |
Zbl 0987.81005
[4] Foulis, D. J., Bennett, M. K.:
Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331-1352.
DOI |
MR 1304942 |
Zbl 1213.06004
[5] Giuntini, R., Grueuling, H.:
Toward a formal language for unsharp properties. Found. Phys. 19 (1989), 931-945.
DOI |
MR 1013913
[6] Greechie, R. J.:
Orthomodular lattices admitting no states. J. Combinat. Theory 10 (1971), 119-132.
DOI |
MR 0274355
[7] Gudder, S.:
Effect test spaces and effect algebras. Found. Phys. 27 (1997), 287-304.
DOI |
MR 1444965
[8] Kopka, F., Chovanec, F.:
$D$-posets. Math. Slovaca 44 (1994), 21-34.
MR 1290269
[10] Riečanová, Z.:
Proper Effect Algebras Admitting No States. Int. J. Theoret. Physics 40 (2001), 10, 1683-1691.
DOI |
MR 1858217
[11] Ji, Wei:
Characterization of homogeneity in orthocomplete atomic effect algebras. Fuzzy Sets Systems 236 (2014), 113-121.
DOI |
MR 3132755