Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
connected graded algebra; PBW-deformation; self-symmetry; sign-symmetry; $\mathcal {K}_2$ algebra
Summary:
We focus on connected graded algebras and their PBW-deformations endowed with additional symmetric structures. Many well-known algebras such as negative parts of Drinfeld-Jimbo's quantum groups, cubic Artin-Schelter algebras and three-dimensional Sklyanin algebras appear in our research framework. As an application, we investigate a $\mathcal {K}_2$ algebra $\mathcal {A}$ which was introduced to compute the cohomology ring of the Fomin-Kirillov algebra $\mathcal {FK}_3$, and explicitly construct all the (self-)symmetric and sign-(self-)symmetric PBW-deformations of $\mathcal {A}$.
References:
[1] Berger, R.: Koszulity for nonquadratic algebras. J. Algebra 239 (2001), 705-734. DOI 10.1006/jabr.2000.8703 | MR 1832913 | Zbl 1035.16023
[2] Berger, R., Ginzburg, V.: Higher symplectic reflection algebras and non-homogeneous $N$-Koszul property. J. Algebra 304 (2006), 577-601. DOI 10.1016/j.jalgebra.2006.03.011 | MR 2256407 | Zbl 1151.16026
[3] Berger, R., Taillefer, R.: Poincaré-Birkhoff-Witt deformations of Calabi-Yau algebras. J. Noncommut. Geom. 1 (2007), 241-270. DOI 10.4171/JNCG/6 | MR 2308306 | Zbl 1161.16022
[4] Braverman, A., Gaitsgory, D.: Poincaré-Birkhoff-Witt theorem for quadratic algebras of Koszul type. J. Algebra 181 (1996), 315-328. DOI 10.1006/jabr.1996.0122 | MR 1383469 | Zbl 0860.17002
[5] Cassidy, T., Shelton, B.: PBW-deformation theory and regular central extensions. J. Reine Angew. Math. 610 (2007), 1-12. DOI 10.1515/CRELLE.2007.065 | MR 2359848 | Zbl 1147.16022
[6] Cassidy, T., Shelton, B.: Generalizing the notion of Koszul algebra. Math. Z. 260 (2008), 93-114. DOI 10.1007/s00209-007-0263-8 | MR 2413345 | Zbl 1149.16026
[7] Etingof, P., Ginzburg, V.: Noncommutative del Pezzo surfaces and Calabi-Yau algebras. J. Eur. Math. Soc. (JEMS) 12 (2010), 1371-1416. DOI 10.4171/JEMS/235 | MR 2734346 | Zbl 1204.14004
[8] Fløystad, G., Vatne, J. E.: PBW-deformations of $N$-Koszul algebras. J. Algebra 302 (2006), 116-155. DOI 10.1016/j.jalgebra.2005.08.032 | MR 2236596 | Zbl 1159.16026
[9] Fuchs, J., Schellekens, B., Schweigert, C.: From Dynkin diagram symmetries to fixed point structures. Commun. Math. Phys. 180 (1996), 39-97. DOI 10.1007/BF02101182 | MR 1403859 | Zbl 0863.17020
[10] Gavrilik, A. M., Klimyk, A. U.: $q$-deformed orthogonal and pseudo-orthogonal algebras and their representations. Lett. Math. Phys. 21 (1991), 215-220. DOI 10.1007/BF00420371 | MR 1102131 | Zbl 0735.17020
[11] Heckenberger, I., Vendramin, L.: PBW deformations of a Fomin-Kirillov algebra and other examples. Algebr. Represent. Theory 22 (2019), 1513-1532. DOI 10.1007/s10468-018-9830-4 | MR 4034793 | Zbl 1454.16037
[12] Humphreys, J. E.: Introduction to Lie Algebras and Representation Theory. Graduate Texts in Mathematics 9. Springer, New York (2006). DOI 10.1007/978-1-4612-6398-2 | MR 0499562 | Zbl 0447.17001
[13] Iorgov, N. Z., Klimyk, A. U.: The nonstandard deformation $U'_{q}(so_n)$ for $q$ a root of unity. Methods Funct. Anal. Topol. 6 (2000), 56-71. MR 1903121 | Zbl 0980.17009
[14] Iorgov, N. Z., Klimyk, A. U.: Classification theorem on irreducible representations of the $q$-deformed algebra $U'_{q}(so_n)$. Int. J. Math. Math. Sci. 2005 (2005), 225-262. DOI 10.1155/IJMMS.2005.225 | MR 2143754 | Zbl 1127.17016
[15] Kolb, S., Pellegrini, J.: Braid group actions on coideal subalgebras of quantized enveloping algebras. J. Algebra 336 (2011), 395-416. DOI 10.1016/j.jalgebra.2011.04.001 | MR 2802552 | Zbl 1266.17011
[16] Letzter, G.: Subalgebras which appear in quantum Iwasawa decompositions. Can. J. Math. 49 (1997), 1206-1223. DOI 10.4153/CJM-1997-059-4 | MR 1611652 | Zbl 0898.17005
[17] Letzter, G.: Symmetric pairs for quantized enveloping algebras. J. Algebra 220 (1999), 729-767. DOI 10.1006/jabr.1999.8015 | MR 1717368 | Zbl 0956.17007
[18] Letzter, G.: Coideal subalgebras and quantum symmetric pairs. New Directions in Hopf Algebras Mathematical Sciences Research Institute Publications 43. Cambridge University Press, Cambridge (2002), 117-166. MR 1913438 | Zbl 1025.17005
[19] Letzter, G.: Quantum symmetric pairs and their zonal spherical functions. Transform. Groups 8 (2003), 261-292. DOI 10.1007/s00031-003-0719-9 | MR 1996417 | Zbl 1107.17010
[20] Polishchuk, A., Positselski, L.: Quadratic Algebras. University Lecture Series 37. AMS, Providence (2005). DOI 10.1090/ulect/037 | MR 2177131 | Zbl 1145.16009
[21] Ştefan, D., Vay, C.: The cohomology ring of the 12-dimensional Fomin-Kirillov algebra. Adv. Math. 291 (2016), 584-620. DOI 10.1016/j.aim.2016.01.001 | MR 3459024 | Zbl 1366.18015
[22] Walton, C. M.: On Degenerations and Deformations of Sklyanin Algebras: Ph.D. Thesis. University of Michigan, Ann Arbor (2011). MR 2942216
[23] Xu, Y., Huang, H.-L., Wang, D.: Realization of PBW-deformations of type $\Bbb A_n$ quantum groups via multiple Ore extensions. J. Pure Appl. Algebra 223 (2019), 1531-1547. DOI 10.1016/j.jpaa.2018.06.017 | MR 3906516 | Zbl 1439.17019
[24] Xu, Y., Wang, D., Chen, J.: Analogues of quantum Schubert cell algebras in PBW-deformations of quantum groups. J. Algebra. Appl. 15 (2016), Article ID 1650179, 13 pages. DOI 10.1142/S0219498816501796 | MR 3575969 | Zbl 1366.17016
[25] Xu, Y., Yang, S.: PBW-deformations of quantum groups. J. Algebra 408 (2014), 222-249. DOI 10.1016/j.jalgebra.2013.08.011 | MR 3197182 | Zbl 1366.17017
Partner of
EuDML logo