Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
variable exponent; fractional maximal function; Riesz potential; Sobolev's inequality; weighted Morrey space; double phase functional
Summary:
Our aim is to establish Sobolev type inequalities for fractional maximal functions $M_{\mathbb H,\nu }f$ and Riesz potentials $I_{\mathbb H,\alpha }f$ in weighted Morrey spaces of variable exponent on the half space $\mathbb H$. We also obtain Sobolev type inequalities for a $C^1$ function on $\mathbb H$. As an application, we obtain Sobolev type inequality for double phase functionals with variable exponents $\Phi (x,t) = t^{p(x)} + (b(x) t)^{q(x)}$, where $p(\cdot )$ and $q(\cdot )$ satisfy log-Hölder conditions, $p(x)<q(x)$ for $x \in {\mathbb H} $, and $b(\cdot )$ is nonnegative and Hölder continuous of order $\theta \in (0,1]$.
References:
[1] Adams, D. R.: A note on Riesz potentials. Duke Math. J. 42 (1975), 765-778. DOI 10.1215/S0012-7094-75-04265-9 | MR 0458158 | Zbl 0336.46038
[2] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory. Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1995). DOI 10.1007/978-3-662-03282-4 | MR 1411441 | Zbl 0834.46021
[3] Almeida, A., Hasanov, J., Samko, S.: Maximal and potential operators in variable exponent Morrey spaces. Georgian Math. J. 15 (2008), 195-208. DOI 10.1515/GMJ.2008.195 | MR 2428465 | Zbl 1263.42002
[4] Baroni, P., Colombo, M., Mingione, G.: Non-autonomous functionals, borderline cases and related function classes. St. Petersbg. Math. J. 27 (2016), 347-379. DOI 10.1090/spmj/1392 | MR 3570955 | Zbl 1335.49057
[5] Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equ. 57 (2018), Article ID 62, 48 pages. DOI 10.1007/s00526-018-1332-z | MR 3775180 | Zbl 1394.49034
[6] Byun, S.-S., Lee, H.-S.: Calderón-Zygmund estimates for elliptic double phase problems with variable exponents. J. Math. Anal. Appl. 501 (2021), Article ID 124015, 31 pages. DOI 10.1016/j.jmaa.2020.124015 | MR 4258791 | Zbl 1467.35064
[7] Capone, C., Cruz-Uribe, D., Fiorenza, A.: The fractional maximal operator and fractional integrals on variable $L^p$ spaces. Rev. Mat. Iberoam. 23 (2007), 743-770. DOI 10.4171/RMI/511 | MR 2414490 | Zbl 1213.42063
[8] Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218 (2015), 219-273. DOI 10.1007/s00205-015-0859-9 | MR 3360738 | Zbl 1325.49042
[9] Colombo, M., Mingione, G.: Regularity for double phase variational problems. Arch. Ration. Mech. Anal. 215 (2015), 443-496. DOI 10.1007/s00205-014-0785-2 | MR 3294408 | Zbl 1322.49065
[10] Cruz-Uribe, D. V., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013). DOI 10.1007/978-3-0348-0548-3 | MR 3026953 | Zbl 1268.46002
[11] Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J.: Weighted norm inequalities for the maximal operator on variable Lebesgue spaces. J. Math. Anal. Appl. 394 (2012), 744-760. DOI 10.1016/j.jmaa.2012.04.044 | MR 2927495 | Zbl 1298.42021
[12] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2017. Springer, Berlin (2011). DOI 10.1007/978-3-642-18363-8 | MR 2790542 | Zbl 1222.46002
[13] Fazio, G. Di, Ragusa, M. A.: Commutators and Morrey spaces. Boll. Unione Mat. Ital., VII. Ser., A 5 (1991), 323-332. MR 1138545 | Zbl 0761.42009
[14] Haj{ł}asz, P., Koskela, P.: Sobolev Met Poincaré. Memoirs of the American Mathematical Society 688. AMS, Providence (2000). DOI 10.1090/memo/0688 | MR 1683160 | Zbl 0954.46022
[15] Hästö, P., Ok, J.: Calderón-Zygmund estimates in generalized Orlicz spaces. J. Differ. Equations 267 (2019), 2792-2823. DOI 10.1016/j.jde.2019.03.026 | MR 3953020 | Zbl 1420.35087
[16] Kinnunen, J., Lindqvist, P.: The derivative of the maximal function. J. Reine Angew. Math. 503 (1998), 161-167. DOI 10.1515/crll.1998.095 | MR 1650343 | Zbl 0904.42015
[17] Kinnunen, J., Saksman, E.: Regularity of the fractional maximal function. Bull. Lond. Math. Soc. 35 (2003), 529-535. DOI 10.1112/S0024609303002017 | MR 1979008 | Zbl 1021.42009
[18] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces. Bull. Sci. Math. 137 (2013), 76-96. DOI 10.1016/j.bulsci.2012.03.008 | MR 3007101 | Zbl 1267.46045
[19] Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequality for double phase functionals with variable exponents. Forum Math. 31 (2019), 517-527. DOI 10.1515/forum-2018-0077 | MR 3918454 | Zbl 1423.46049
[20] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponents. Complex Var. Elliptic Equ. 56 (2011), 671-695. DOI 10.1080/17476933.2010.504837 | MR 2832209 | Zbl 1228.31004
[21] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in $\Bbb R^n$. Rev. Mat. Complut. 25 (2012), 413-434. DOI 10.1007/s13163-011-0074-7 | MR 2931419 | Zbl 1273.31005
[22] Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T.: Campanato-Morrey spaces for the double phase functionals with variable exponents. Nonlinear Anal., Theory Methods Appl., Ser. A 197 (2020), Article ID 111827, 18 pages. DOI 10.1016/j.na.2020.111827 | MR 4073513 | Zbl 1441.31004
[23] Mizuta, Y., Ohno, T., Shimomura, T.: Sobolev's inequalities for Herz-Morrey-Orlicz spaces on the half space. Math. Inequal. Appl. 21 (2018), 433-453. DOI 10.7153/mia-2018-21-30 | MR 3776085 | Zbl 1388.31009
[24] Mizuta, Y., Ohno, T., Shimomura, T.: Boundedness of fractional maximal operators for double phase functionals with variable exponents. J. Math. Anal. Appl. 501 (2021), Article ID 124360, 16 pages. DOI 10.1016/j.jmaa.2020.124360 | MR 4258801 | Zbl 1478.46028
[25] Mizuta, Y., Shimomura, T.: Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent. J. Math. Soc. Japan 60 (2008), 583-602. DOI 10.2969/jmsj/06020583 | MR 2421989 | Zbl 1161.46305
[26] Mizuta, Y., Shimomura, T.: Hardy-Sobolev inequalities in the unit ball for double phase functionals. J. Math. Anal. Appl. 501 (2021), Article ID 124133, 17 pages. DOI 10.1016/j.jmaa.2020.124133 | MR 4258797 | Zbl 1478.46037
[27] Mizuta, Y., Shimomura, T.: Sobolev type inequalities for fractional maximal functions and Green potentials in half spaces. Positivity 25 (2021), 1131-1146. DOI 10.1007/s11117-021-00810-z | MR 4274309 | Zbl 1481.46030
[28] Mizuta, Y., Shimomura, T.: Boundedness of fractional integral operators in Herz spaces on the hyperplane. Math. Methods Appl. Sci. 45 (2022), 8631-8654. DOI 10.1002/mma.7425 | MR 4475228
[29] Mizuta, Y., Shimomura, T.: Sobolev type inequalities for fractional maximal functions and Riesz potentials in half spaces. Available at https://arxiv.org/abs/2305.13708 (2023), 22 pages. MR 4274309
[30] C. B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43 (1938), 126-166. DOI 10.1090/S0002-9947-1938-1501936-8 | MR 1501936 | Zbl 0018.40501
[31] Ragusa, M. A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9 (2020), 710-728. DOI 10.1515/anona-2020-0022 | MR 3985000 | Zbl 1420.35145
[32] Sawano, Y., Shimomura, T.: Fractional maximal operator on Musielak-Orlicz spaces over unbounded quasi-metric measure spaces. Result. Math. 76 (2021), Article ID 188, 22 pages. DOI 10.1007/s00025-021-01490-7 | MR 4305494 | Zbl 1479.42055
Partner of
EuDML logo