Previous |  Up |  Next

Article

Title: Modifications of Newton-Cotes formulas for computation of repeated integrals and derivatives (English)
Author: Tvrdá, Katarína
Author: Novotný, Peter
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 4
Year: 2023
Pages: 1175-1188
Summary lang: English
.
Category: math
.
Summary: Standard algorithms for numerical integration are defined for simple integrals. Formulas for computation of repeated integrals and derivatives for equidistant domain partition based on modified Newton-Cotes formulas are derived. We compare usage of the new formulas with the classical quadrature formulas and discuss possible application of the results to solving higher order differential equations. (English)
Keyword: repeated integral
Keyword: Cauchy formula for repeated integration
Keyword: quadrature
Keyword: cubature
Keyword: numerical differentiation
MSC: 65D32
idZBL: Zbl 07790567
DOI: 10.21136/CMJ.2023.0437-22
.
Date available: 2023-11-23T12:24:58Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151953
.
Reference: [1] Abramowitz, M., (eds.), I. A. Stegun: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables.U.S. Department of Commerce, Washington (1964). Zbl 0171.38503, MR 0167642
Reference: [2] Bauchau, O. A., Craig, J. I.: Euler-Bernoulli beam theory.Structural Analysis Solid Mechanics and Its Applications 163. Springer, Dordrecht (2009), 173-221. 10.1007/978-90-481-2516-6_5
Reference: [3] Burden, R. L., Faires, J. D.: Numerical Analysis.PWS Publishing Company, Boston (1993). Zbl 0788.65001
Reference: [4] Folland, G. B.: Advanced Calculus.Prentice Hall, Hoboken (2001).
Reference: [5] Holoborodko, P.: Stable Newton-Cotes Formulas.Available at \brokenlink{http://www.holoborodko.com/pavel/numerical-methods/numerical-integration/{stable-newton-cotes-formulas/}}.
Reference: [6] Janečka, A., Průša, V., Rajagopal, K. R.: Euler-Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range.Arch. Mech. 68 (2016), 3-25. Zbl 1338.74073, MR 3497874
Reference: [7] Selvam, V. K. M., Bindhu, K. R.: Application of double integration method and the Maxwell-Betti theorem for finding deflection in determinate flexural frames: A supplement note.J. Struct. Eng. 41 (2014), 420-431.
Reference: [8] Tvrdá, K.: Solution of a high bridge pillar under wind effects taking into account the real properties of reinforced concrete.MATEC Web Conf. 313 (2020), 6 pages. 10.1051/matecconf/202031300008
Reference: [9] Tvrdá, K., Minárová, M.: Computation of definite integral over repeated integral.Tatra Mt. Math. Publ. 72 (2018), 141-154. Zbl 07031665, MR 3939444, 10.2478/tmmp-2018-0026
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo