Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
hypergeometric series; Bailey's cubic transformation; contiguous relation; reversal series; binomial coefficient
Summary:
By employing one of the cubic transformations (due to W. N. Bailey (1928)) for the $_3F_2(x)$-series, we examine a class of $_3F_2(4)$-series. Several closed formulae are established by means of differentiation, integration and contiguous relations. As applications, some remarkable binomial sums are explicitly evaluated, including one proposed recently as an open problem.
References:
[1] Bailey, W. N.: Products of generalized hypergeometric series. Proc. Lond. Math. Soc. (2) 28 (1928), 242-254 \99999JFM99999 54.0392.04. DOI 10.1112/plms/s2-28.1.242 | MR 1575853
[2] Bailey, W. N.: Generalized Hypergeometric Series. Cambridge Tracts in Mathematics and Mathematical Physics 32. Cambridge University Press, Cambridge (1935). MR 0185155 | Zbl 0011.02303
[3] Campbell, J. M.: Solution to a problem due to Chu and Kiliç. Integers 22 (2022), Article ID A46, 8 pages. MR 4430897 | Zbl 1493.11044
[4] Chen, X., Chu, W.: Closed formulae for a class of terminating $_3F_2(4)$-series. Integral Transform Spec. Funct. 28 (2017), 825-837. DOI 10.1080/10652469.2017.1376194 | MR 3724507 | Zbl 1379.33012
[5] Chu, W.: Inversion techniques and combinatorial identities: A quick introduction to hypergeometric evaluations. Runs and Patterns in Probability Mathematics and its Applications 283. Kluwer, Dordrecht (1994), 31-57. MR 1292876 | Zbl 0830.05006
[6] Chu, W.: Inversion techniques and combinatorial identities: Balanced hypergeometric series. Rocky Mt. J. Math. 32 (2002), 561-587. DOI 10.1216/rmjm/1030539687 | MR 1934906 | Zbl 1038.33002
[7] Chu, W.: Terminating $_2F_1(4)$-series perturbed by two integer parameters. Proc. Am. Math. Soc. 145 (2017), 1031-1040. DOI 10.1090/proc/13293 | MR 3589303 | Zbl 1352.33001
[8] Chu, W.: Further identities on Catalan numbers. Discrete Math. 341 (2018), 3159-3164. DOI 10.1016/j.disc.2018.07.028 | MR 3854125 | Zbl 1395.05024
[9] Chu, W.: Alternating convolutions of Catalan numbers. Bull. Braz. Math. Soc. (N.S.) 53 (2022), 95-105. DOI 10.1007/s00574-021-00252-x | MR 4379425 | Zbl 1484.05012
[10] Chu, W., Kiliç, E.: Binomial sums involving Catalan numbers. Rocky Mt. J. Math. 51 (2021), 1221-1225. DOI 10.1216/rmj.2021.51.1221 | MR 4298842 | Zbl 1473.05017
[11] Gessel, I. M.: Finding identities with the WZ method. J. Symb. Comput. 20 (1995), 537-566. DOI 10.1006/jsco.1995.1064 | MR 1395413 | Zbl 0908.33004
[12] Gessel, I. M., Stanton, D.: Strange evaluations of hypergeometric series. SIAM J. Math. Anal. 13 (1982), 295-308. DOI 10.1137/0513021 | MR 0647127 | Zbl 0486.33003
[13] Mikić, J.: Two new identities involving the Catalan numbers and sign-reversing involutions. J. Integer Seq. 22 (2019), Article ID 19.7.7, 10 pages. MR 4040982 | Zbl 1431.05020
[14] Zeilberger, D.: Forty ``strange" computer-discovered and computer-proved (of course) hypergeometric series evaluations. Available at {\def\let \relax \brokenlink{ https://sites.math.rutgers.edu/ zeilberg/mamarim/mamarimhtml/strange.html}}\kern0pt (2004).
[15] Zhou, R. R., Chu, W.: Identities on extended Catalan numbers and their $q$-analogs. Graphs Comb. 32 (2016), 2183-2197. DOI 10.1007/s00373-016-1694-y | MR 3543225 | Zbl 1351.05034
Partner of
EuDML logo