Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
decomposition of a module; FGC-ring; Köthe ring; semiartinian module; \hbox {(semi-)V-module}; locally supplemented module
Summary:
We provide some characterizations of rings $R$ for which every (finitely generated) module belonging to a class $\mathcal {C}$ of $R$-modules is a direct sum of cyclic submodules. We focus on the cases, where the class $\mathcal {C}$ is one of the following classes of modules: semiartinian modules, semi-V-modules, V-modules, coperfect modules and locally supplemented modules.
References:
[1] Albu, T., Wisbauer, R.: Kasch modules. Advances in Ring Theory Trends in Mathematics. Birkhäuser, Boston (1997), 1-16. DOI 10.1007/978-1-4612-1978-1_1 | MR 1602688 | Zbl 0885.16004
[2] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules. Graduate Texts in Mathematics 13. Springer, New York (1974). DOI 10.1007/978-1-4612-4418-9 | MR 0417223 | Zbl 0301.16001
[3] Baccella, G.: Semiartinian $V$-rings and semiartinian von Neumann regular rings. J. Algebra 173 (1995), 587-612. DOI 10.1006/jabr.1995.1104 | MR 1327870 | Zbl 0829.16007
[4] Brandal, W.: Commutative Rings whose Finitely Generated Modules Decompose. Lecture Notes in Mathematics 723. Springer, New York (1979). DOI 10.1007/BFb0069021 | MR 0539854 | Zbl 0426.13004
[5] Camillo, V., Yousif, M. F.: Semi-$V$-modules. Commun. Algebra 17 (1989), 165-177. DOI 10.1080/00927878908823720 | MR 0970870 | Zbl 0658.16020
[6] Cheatham, T. J., Smith, J. R.: Regular and semisimple modules. Pac. J. Math. 65 (1976), 315-323. DOI 10.2140/pjm.1976.65.315 | MR 0422348 | Zbl 0326.16011
[7] Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting Modules: Supplements and Projectivity in Module Theory. Frontiers in Mathematics. Birkhäuser, Basel (2006). DOI 10.1007/3-7643-7573-6 | MR 2253001 | Zbl 1102.16001
[8] Cohen, I. S.: Commutative rings with resticted minimum condition. Duke Math. J. 17 (1950), 27-42. DOI 10.1215/S0012-7094-50-01704-2 | MR 0033276 | Zbl 0041.36408
[9] Cohen, I. S., Kaplansky, I.: Rings for which every module is a direct sum of cyclic modules. Math. Z. 54 (1951), 97-101. DOI 10.1007/BF01179851 | MR 0043073 | Zbl 0043.26702
[10] Couchot, F.: Indecomposable modules and Gelfand rings. Commun. Algebra 35 (2007), 231-241. DOI 10.1080/00927870601041615 | MR 2287564 | Zbl 1107.13012
[11] Dickson, S. E.: Decomposition of modules. II: Rings whithout chain conditions. Math. Z. 104 (1968), 349-357. DOI 10.1007/BF01110426 | MR 0229678 | Zbl 0164.34703
[12] Facchini, A.: Rings whose finitely generated torsion modules in the sense of Dickson decompose into direct sums of cyclic submodules. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 68 (1980), 13-21. MR 0625910 | Zbl 0469.13005
[13] Facchini, A.: Loewy and Artinian modules over commutative rings. Ann. Mat. Pura Appl., IV. Ser. 128 (1981), 359-374. DOI 10.1007/BF01789482 | MR 0640791 | Zbl 0488.13014
[14] Faith, C.: Locally perfect commutative rings are those whose modules have maximal submodules. Commun. Algebra 23 (1995), 4885-4886. DOI 10.1080/00927879508825506 | MR 1356108 | Zbl 0840.13006
[15] Fuller, K. R.: Relative projectivity and injectivity classes determined by simple modules. J. Lond. Math. Soc., II. Ser. 5 (1972), 423-431. DOI 10.1112/jlms/s2-5.3.423 | MR 0325686 | Zbl 0253.16018
[16] Gill, D. T.: Almost maximal valuation rings. J. Lond. Math. Soc., II. Ser. 4 (1971), 140-146. DOI 10.1112/jlms/s2-4.1.140 | MR 0292822 | Zbl 0219.13016
[17] Gilmer, R.: Commutative rings in which each prime ideal is principal. Math. Ann. 183 (1969), 151-158. DOI 10.1007/BF01350233 | MR 0248123 | Zbl 0169.05402
[18] Gordon, R., Robson, J. C.: Krull Dimension. Memoirs of the American Mathematical Society 133. AMS, Providence (1973). DOI 10.1090/memo/0133 | MR 0352177 | Zbl 0269.16017
[19] Hirano, Y.: Regular modules and $V$-modules. Hiroshima Math. J. 11 (1981), 125-142. DOI 10.32917/hmj/1206134222 | MR 0606838 | Zbl 0459.16009
[20] Kaplansky, I.: Modules over Dedekind rings and valuation rings. Trans. Am. Math. Soc. 72 (1952), 327-340. DOI 10.1090/S0002-9947-1952-0046349-0 | MR 0046349 | Zbl 0046.25701
[21] Köthe, G.: Verallgemeinerte Abelsche Gruppen mit hyperkomplexem Operatorenring. Math. Z. 39 (1935), 31-44 German. DOI 10.1007/BF01201343 | MR 1545487 | Zbl 0010.01102
[22] Kourki, F., Tribak, R.: On semiartinian and $\Pi$-semiartinian modules. Palest. J. Math. 7 (2018), 99-107. MR 3847599 | Zbl 1411.13008
[23] Kourki, F., Tribak, R.: Characterizations of some classes of rings via locally supplemented modules. Int. Electron. J. Algebra 27 (2020), 178-193. DOI 10.24330/ieja.663060 | MR 4056427 | Zbl 1430.13013
[24] Kourki, F., Tribak, R.: On modules satisfying the descending chain condition on cyclic submodules. Algebra Colloq. 27 (2020), 531-544. DOI 10.1142/S1005386720000449 | MR 4141630 | Zbl 1456.13016
[25] Kourki, F., Tribak, R.: On Bass modules and semi-$V$-modules. Bull. Belg. Math. Soc. - Simon Stevin 28 (2021), 275-294. DOI 10.36045/j.bbms.200928 | MR 4355688 | Zbl 1481.13022
[26] Lafon, J.-P.: Anneaux locaux commutatifs sur lesquels tout module de type fini est somme directe de modules monogènes. J. Algebra 17 (1971), 575-591 French. DOI 10.1016/0021-8693(71)90010-X | MR 0282968 | Zbl 0215.37001
[27] Lam, T. Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics 189. Springer, New York (1999). DOI 10.1007/978-1-4612-0525-8 | MR 1653294 | Zbl 0911.16001
[28] Lam, T. Y.: A First Course in Noncommutative Rings. Graduate Texts in Mathematics 131. Springer, New York (2001). DOI 10.1007/978-1-4419-8616-0 | MR 1838439 | Zbl 0980.16001
[29] Matlis, E.: Decomposable modules. Trans. Am. Math. Soc. 125 (1966), 147-179. DOI 10.1090/S0002-9947-1966-0201465-5 | MR 0201465 | Zbl 0144.03001
[30] Penk, T., Žemlička, J.: Commutative tall rings. J. Algebra Appl. 13 (2014), Article ID 1350129, 11 pages. DOI 10.1142/S0219498813501296 | MR 3153864 | Zbl 1309.13026
[31] Pierce, R. S.: Modules over Commutative Regular Rings. Memoirs of the American Mathematical Society 70. AMS, Providence (1967). DOI 10.1090/memo/0070 | MR 0217056 | Zbl 0152.02601
[32] Sarath, B.: Krull dimension and Noetherianness. Ill. J. Math. 20 (1976), 329-335. DOI 10.1215/ijm/1256049903 | MR 0399158 | Zbl 0323.16008
[33] Sharpe, D. W., Vámos, P.: Injective Modules. Cambridge Tracts in Mathematics and mathematical Physics 62. Cambridge University Press, Cambridge (1972). MR 0360706 | Zbl 0245.13001
[34] Shores, T. S.: Decompositions of finitely generated modules. Proc. Am. Math. Soc. 30 (1971), 445-450. DOI 10.1090/S0002-9939-1971-0281708-X | MR 0281708 | Zbl 0203.05002
[35] Uzkov, A. I.: On the decomposition of modules over a commutative ring into direct sums of cyclic submodules. Mat. Sb., N. Ser. 62 (104) (1963), 469-475 Russian. MR 0157986 | Zbl 0122.29003
[36] Vámos, P.: The dual notion of "finitely generated". J. Lond. Math. Soc. 43 (1968), 643-646. DOI 10.1112/jlms/s1-43.1.643 | MR 0248171 | Zbl 0164.04003
[37] R. B. Warfield, Jr.: Decomposability of finitely presented modules. Proc. Am. Math. Soc. 25 (1970), 167-172. DOI 10.1090/S0002-9939-1970-0254030-4 | MR 0254030 | Zbl 0204.05902
[38] Wisbauer, R.: Foundations of Module and Ring Theory: A Handbook for Study and Research. Algebra, Logic and Applications 3. Gordon and Breach Science Publishers, Philadelphia (1991). DOI 10.1201/9780203755532 | MR 1144522 | Zbl 0746.16001
Partner of
EuDML logo