Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
hysteresis; friction; energy dissipation; nonlinear convergence; stick-slip cycles
Summary:
The problem of transient hysteresis cycles induced by the pre-sliding kinetic friction is relevant for analyzing the system dynamics, e.g., of micro- and nano-positioning instruments and devices and their controlled operation. The associated energy dissipation and consequent convergence of the state trajectories occur due to the structural hysteresis damping of contact surface asperities during reversals, and it is neither exponential (i.e., viscous type) nor finite-time (i.e., Coulomb type). In this paper, we discuss the energy dissipation and convergence during the pre-sliding cycles and show how a piecewise smooth force-displacement hysteresis map enters into the energy balance of an unforced system of the second order. An existing friction modeling approach with a low number of the free parameters, the Dahl model, is then exemplified alongside the developed analysis.
References:
[1] Al-Bender, F., Symens, W., Swevers, J., Brussel, H. Van: Theoretical analysis of the dynamic behavior of hysteresis elements in mechanical systems. Int. J. Non-Linear Mech. 39 (2004), 1721-1735. DOI 10.1016/j.ijnonlinmec.2004.04.005 | Zbl 1349.74291
[2] Armstrong-Hélouvry, B., Dupont, P., Wit, C. C. De: A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30 (1994), 1083-1138. DOI 10.1016/0005-1098(94)90209-7 | Zbl 0800.93424
[3] Bertotti, G., (Eds.), I. D. Mayergoyz: The Science of Hysteresis. Vol. I. Mathematical Modeling and Applications. Elsevier, Amsterdam (2006). MR 2307929 | Zbl 1117.34045
[4] Bertotti, G., (Eds.), I. D. Mayergoyz: The Science of Hysteresis. Vol. II. Physical Modeling, Micromagnetics, and Magnetization Dynamics. Elsevier, Amsterdam (2006). MR 2307930 | Zbl 1117.34046
[5] Bertotti, G., (Eds.), I. D. Mayergoyz: The Science of Hysteresis. Vol. III. Hysteresis in Materials. Elsevier, Amsterdam (2006). MR 2307931 | Zbl 1117.34047
[6] Bliman, P.-A. J.: Mathematical study of the Dahl's friction model. Eur. J. Mech., A 11 (1992), 835-848. MR 1196551 | Zbl 0766.73059
[7] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Applied Mathematical Sciences 121. Springer, New York (1996). DOI 10.1007/978-1-4612-4048-8 | MR 1411908 | Zbl 0951.74002
[8] Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., Knuth, D. E.: On the Lambert $W$ function. Adv. Comput. Math. 5 (1996), 329-359. DOI 10.1007/BF02124750 | MR 1414285 | Zbl 0863.65008
[9] Dahl, P. R.: A Solid Friction Model. Aerospace Corporation, Los Angeles (1968), Available at https://apps.dtic.mil/sti/pdfs/ADA041920.pdf\kern0pt
[10] Dahl, P. R.: Solid friction damping of mechanical vibrations. AIAA Journal 14 (1976), 1675-1682. DOI 10.2514/3.61511
[11] Greenwood, J. A., Minshall, H., Tabor, D.: Hysteresis losses in rolling and sliding friction. Proc. R. Soc. Lond., Ser. A 259 (1961), 480-507. DOI 10.1098/rspa.1961.0004
[12] Koizumi, T., Shibazaki, H.: A study of the relationships governing starting rolling friction. Wear 93 (1984), 281-290. DOI 10.1016/0043-1648(84)90202-3
[13] Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. GAKUTO International Series. Mathematical Sciences and Applications 8. Gakkotosho, Tokyo (1996). MR 2466538 | Zbl 1187.35003
[14] Lacarbonara, W., Vestroni, F.: Nonclassical responses of oscillators with hysteresis. Nonlinear Dyn. 32 (2003), 235-258 \99999DOI99999 10.1023/A:1024423626386 . DOI 10.1023/A:1024423626386 | Zbl 1062.70599
[15] Lampaert, V., Al-Bender, F., Swevers, J.: Experimental characterization of dry friction at low velocities on a developed tribometer setup for macroscopic measurements. Tribology Lett. 16 (2004), 95-105. DOI 10.1023/B:TRIL.0000009719.53083.9e
[16] Ruderman, M.: Presliding hysteresis damping of LuGre and Maxwell-slip friction models. Mechatronics 30 (2015), 225-230. DOI 10.1016/j.mechatronics.2015.07.007
[17] Ruderman, M.: Stick-slip and convergence of feedback-controlled systems with Coulomb friction. Asian J. Control 24 (2022), 2877-2887. DOI 10.1002/asjc.2718 | MR 4525023
[18] Ruderman, M., Rachinskii, D.: Use of Prandtl-Ishlinskii hysteresis operators for Coulomb friction modeling with presliding. J. Phys., Conf. Ser. 811 (2017), Article ID 012013, 10 pages. DOI 10.1088/1742-6596/811/1/012013 | MR 3785348
Partner of
EuDML logo