Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
strong closure; feasible state; operator; elliptic system
Summary:
The strong closure of feasible states of families of operators is studied. The results are obtained for self-adjoint operators in reflexive Banach spaces and for more concrete case - families of elliptic systems encountered in the optimal layout of $r$ materials. The results show when it is possible to parametrize the strong closure by the same type of operators. The results for systems of elliptic operators for the case when number of unknown functions $m$ is less than the dimension $n$ of the reference domain are well-known, but we present several different approaches in this paper to prove that parametrization of the strong closure of feasible states can be done by convexification. Also, a new approach is offered to prove result for the strong closure of cogradients. There are given counterexamples for the case $m\geq n$ when the parametrization by convexification is not possible. This extends the known result for the case $m=n=2$.
References:
[1] Aubin J.-P., Ekeland I.: Applied Nonlinear Analysis. Pure Appl. Math. (N. Y.), Wiley-Intersci. Publ., John Wiley, New York, 1984. MR 0749753 | Zbl 1115.47049
[2] Beran M. J.: Field fluctuations in a two-phase random medium. J. Math. Phys. 21 (1980), 2583–2585. DOI 10.1063/1.524364
[3] Briane M., Nesi V.: Is it wise to keep laminating?. ESAIM Control Optim. Calc. Var. 10 (2004), no. 4, 452–477. DOI 10.1051/cocv:2004015 | MR 2111075
[4] Dunford N., Schwartz J. T.: Linear Operators. I. General Theory. Pure and Applied Mathematics, 7, Interscience Publishers, New York; Interscience Publishers Ltd., London, 1958. MR 0117523
[5] Dvořák J., Haslinger J., Miettinen M.: On the problem of optimal material distribution. Report University of Jyväskylä 7 (1996).
[6] Ekeland I., Temam R.: Convex Analysis and Variational Problems. Studies in Mathematics and Its Applications, 1, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing Co., New York, 1976. MR 0463994
[7] Gamkrelidze R. V.: Fundamentals of Optimal Control. Izdat. Tbilis. Univ., Tbilisi, 1975 (Russian). MR 0686791
[8] Kohn R. V., Strang G.: Optimal design and relaxation of variational problems. I. Comm. Pure Appl. Math. 39 (1986), no. 1, 113–137. DOI 10.1002/cpa.3160390107 | MR 0820342
[9] Kohn R. V., Strang G.: Optimal design and relaxation of variational problems. II. Comm. Pure Appl. Math. 39 (1986), no. 2, 139–182. DOI 10.1002/cpa.3160390202 | MR 0820067
[10] Kohn R. V., Strang G.: Optimal design and relaxation of variational problems. III. Comm. Pure Appl. Math. 39 (1986), no. 3, 353–377. DOI 10.1002/cpa.3160390305 | MR 0829845
[11] Lur'e K. A.: Optimal Control in Problems of Mathematical Physics. Izdat. Nauka, Moscow, 1975 (Russian). MR 0487655
[12] Murat F.: Contre-exemples pour divers problèmes o\`u le contrôle intervient dans les coefficients. Ann. Mat. Pura Appl. (4) 112 (1977), 49–68. MR 0438205
[13] Murat F.: Compacité par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 3, 489–507 (French). MR 0506997
[14] Nečas J.: Les méthodes directes en théorie des équations elliptiques. Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR 0227584
[15] Olejnik O. A., Yosifyan G. A., Shamaev A. S.: Mathematical Problems in the Theory of Strongly Nonhomogeneous Elastic Media. Moscow University Press, Moscow, 1990 (Russian). MR 1115306
[16] Raĭtums U. "E.: The passage to the convex hull of a set of admissible operators in optimal control problems. Dokl. Akad. Nauk SSSR 285 (1985), no. 2, 289–292 (Russian). MR 0820853
[17] Raitums U.: The maximum principle and the convexification of optimal control problems. Control Cybernet. 23 (1994), no. 4, 745–760. MR 1303381
[18] Raitums U.: Lecture Notes on $G$-convergence, Convexification and Optimal Control Problems for Elliptic Equations. Lecture Notes, 39, University of Jyväskylä, Department of Mathematics, Jyväskylä, 1997.
[19] Raitums U.: On the projections of multivalued maps. J. Optim. Theory Appl. 92 (1997), no. 3, 633–660. DOI 10.1023/A:1022611608062 | MR 1432612
[20] Raitums U.: On the strong closure of sets of feasible states and cogradients for elliptic equations. Dynam. Contin. Discrete Impuls. Systems 7 (2000), no. 3, 335–350. MR 1774949
[21] Tartar L.: Problèmes de contrôle des coefficientes dans les èquations aux dérivèes partielles. Control Theory, Numerical Methods and Computer Systems Modeling, Internat. Sympos., IRIA LABORIA, Rocquencourt, 1974, Lecture Notes in Econom. and Math. Systems, 107, Springer, Berlin, 1975, pages 420–426 (French). MR 0428166
[22] Tartar L.: Homogénéisation en hydrodynamique. Singular Perturbations and Boundary Layer Theory, Proc. Conf., École Centrale, Lyon, 1976, Lecture Notes in Math., 594, Springer, Berlin, 1977, pages 474–481 (French). MR 0471604
[23] Tartar L.: Remarks on optimal design problems. Calculus of Variations, Homogenization and Continuum Mechanics, Marseille, 1993, Ser. Adv. Math. Appl. Sci., 18, World Scientific Publishing Co., River Edge, 1994, pages 279–296. MR 1428706
[24] Vainikko G., Kunisch K.: Identifiability of the transmissivity coefficient in an elliptic boundary value problem. Z. Anal. Anwendungen 12 (1993), no. 2, 327–341. DOI 10.4171/ZAA/562 | MR 1245924
[25] Warga J.: Optimal Control of Differential and Functional Equations. Academic Press, New York, 1972. MR 0372708 | Zbl 0253.49001
[26] Zaytsev O.: On closure of the pre-images of families of mappings. Comment. Math. Univ. Carolin. 39 (1998), no. 3, 491–501. MR 1666766
[27] Zaytsev O.: On strong closure of sets of feasible states associated with families of elliptic operators. Z. Anal. Anwendungen 17 (1998), no. 3, 565–575. DOI 10.4171/ZAA/839 | MR 1649372
[28] Zhikov V. V.: Estimates for an averaged matrix and an averaged tensor. Uspekhi Mat. Nauk 46 (1991), no. 3, 49–109, 239 (Russian); translation in Russian Math. Surveys 46 (1991), no. 3, 65–136. MR 1134090
[29] Zhikov V. V., Kozlov S. M., Oleĭnik O. A.: Averaging of Differential Operators. Nauka, Moscow, 1993 (Russian). MR 1318242
[30] Zhikov V. V., Kozlov S. M., Oleĭnik O. A., Ngoan H. T.: Averaging and $G$-convergence of differential operators. Uspekhi Mat. Nauk 34 (1979), no. 5(209), 65–133, 256 (Russian). MR 0562800
Partner of
EuDML logo