Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
Fréchet differentiability; partial Fréchet differentiability; first category set; Asplund space; $\sigma$-porous set
Summary:
Let $X_1, \dots, X_n$ be Banach spaces and $f$ a real function on $X=X_1 \times\dots \times X_n$. Let $A_f$ be the set of all points $x \in X$ at which $f$ is partially Fréchet differentiable but is not Fréchet differentiable. Our results imply that if $X_1, \dots, X_{n-1}$ are Asplund spaces and $f$ is continuous (respectively Lipschitz) on $X$, then $A_f$ is a first category set (respectively a $\sigma$-upper porous set). We also prove that if $X$, $Y$ are separable Banach spaces and $f\colon X \to Y$ is a Lipschitz mapping, then there exists a $\sigma$-upper porous set $A \subset X$ such that $f$ is Fréchet differentiable at every point $x \in X \setminus A$ at which it is Fréchet differentiable along a closed subspace of finite codimension and Gâteaux differentiable. A number of related more general results are also proved.
References:
[1] Bessis D. N., Clarke F. H.: Partial subdifferentials, derivates and Rademacher's theorem. Trans. Amer. Math. Soc. 351 (1999), no. 7, 2899–2926. DOI 10.1090/S0002-9947-99-02203-5 | MR 1475676
[2] Cúth M.: Separable reduction theorems by the method of elementary submodels. Fund. Math. 219 (2012), no. 3, 191–222. DOI 10.4064/fm219-3-1 | MR 3001239 | Zbl 1270.46015
[3] Cúth M.: Separable determination in Banach spaces. Fund. Math. 243 (2018), no. 1, 9–27. DOI 10.4064/fm480-11-2017 | MR 3835588
[4] Cúth M., Rmoutil M.: $\sigma$-porosity is separably determined. Czechoslovak Math. J. 63(138) (2013), no. 1, 219–234. DOI 10.1007/s10587-013-0015-3 | MR 3035508
[5] Fabian M., Habala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V.: Functional Analysis and Infinite-dimensional Geometry. CMS Books Math./Ouvrages Math. SMC, 8, Springer, New York, 2001. MR 1831176
[6] Gorlenko S. V.: Certain differential properties of real functions. Ukrain. Mat. Zh. 29 (1977), no. 2, 246–249, 286 (Russian); translation in Ukrainian Math. J. 29 (1977), no. 2, 185–187. MR 0480907
[7] Ilmuradov D. D.: On differential properties of real functions. Ukrain. Mat. Zh. 46 (1994), no. 7, 842–848 (Russian); translation in Ukrainian Math. J. 46 (1994), no. 7, 922–928. DOI 10.1007/BF01056669 | MR 1426800
[8] Kechris A. S.: Classical Descriptive Set Theory. Grad. Texts in Math., 156, Springer, New York, 1995. MR 1321597 | Zbl 0819.04002
[9] Kuratowski K.: Topology. Vol. I. Academic Press, New York, Polish Scientific Publishers, Warsaw, 1966. MR 0217751
[10] Lau K. S., Weil C. E.: Differentiability via directional derivatives. Proc. Amer. Math. Soc. 70 (1978), no. 1, 11–17. DOI 10.1090/S0002-9939-1978-0486354-7 | MR 0486354
[11] Lindenstrauss J., Preiss D., Tišer J.: Fréchet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces. Ann. of Math. Stud., 179, Princeton University Press, Princeton, 2012. MR 2884141
[12] Mykhaylyuk V., Plichko A.: On a problem of Mazur from "the Scottish Book” concerning second partial derivatives. Colloq. Math. 141 (2015), no. 2, 175–182. DOI 10.4064/cm141-2-3 | MR 3404261
[13] Penot J.-P.: Calculus without Derivatives. Grad. Texts in Math., 266, Springer, New York, 2013. DOI 10.1007/978-1-4614-4538-8 | MR 2986672
[14] Preiss D., Zajíček L.: Directional derivatives of Lipschitz functions. Israel J. Math. 125 (2001), 1–27. DOI 10.1007/BF02773371 | MR 1853802
[15] Saint-Raymond J.: Sur les fonctions munies de dérivées partielles. Bull. Sci. Math. (2) 103 (1979), no. 4, 375–378 (French. English summary). MR 0548914
[16] Stepanoff W.: Sur les conditions de l'existence de la differentielle totale. Mat. Sb. 32 (1925), 511–526 (French).
[17] Veselý L., Zajíček L.: On differentiability of convex operators. J. Math. Anal. Appl. 402 (2013), no. 1, 12–22. DOI 10.1016/j.jmaa.2012.12.073 | MR 3023233
[18] Zajíček L.: Fréchet differentiability, strict differentiability and subdifferentiability. Czechoslovak Math. J. 41 (1991), no. 3, 471–489. DOI 10.21136/CMJ.1991.102482 | MR 1117801 | Zbl 0760.46038
[19] Zajíček L.: On $\sigma$-porous sets in abstract spaces. Abstr. Appl. Anal. 2005 (2005), no. 5, 509–534. DOI 10.1155/AAA.2005.509 | MR 2201041 | Zbl 1098.28003
[20] Zajíček L.: Generic Fréchet differentiability on Asplund spaces via a.e. strict differentiability on many lines. J. Convex Anal. 19 (2012), no. 1, 23–48. MR 2934114
[21] Zajíček L.: Gâteaux and Hadamard differentiability via directional differentiability. J. Convex Anal. 21 (2014), no. 3, 703–713. MR 3243814
Partner of
EuDML logo