Previous |  Up |  Next

Article

Keywords:
time-delay systems; state feedback controller; Lyapunov–Krasovskii functional; Wirtinger's inequality; reciprocally convex inequality; linear matrix inequality
Summary:
This paper presents delay-dependent stabilization criteria for linear time-varying delay systems. A less conservative stabilization criterion is derived by invoking a new Lyapunov-Krasovskii functional and then, extended reciprocally convex inequality in combination with Wirtinger's inequality is exploited to obtain an improved stabilization criterion where a set of nonlinear matrix inequalities is solved by applying the cone complementarity algorithm. The proposed stabilization technique transforms a non-convex problem into a nonlinear trace minimization problem which is solved by an iterative approach. Numerical examples are considered to demonstrate the effectiveness of the proposed stabilization criteria and the presented iterative algorithm outperforms some existing results.
References:
[1] Badri, P., Sojoodi, M.: LMI-based robust stability and stabilization analysis of fractional-order interval systems with time-varying delay. Int. J. General Systems 51 (2022), 1, 1-26. DOI  | MR 4394603
[2] Chen, Y., Fei, S., Li, Y.: Stabilization of neutral time-delay systems with actuator saturation via auxiliary time-delay feedback. Automatica 52 (2015), 242-247. DOI  | MR 3310836
[3] Dastaviz, A., Binazadeh, T.: Simultaneous stabilization for a collection of uncertain time-delay systems using sliding-mode output feedback control. In. J. Control 93 (2020), 9, 2135-2144. DOI  | MR 4134401
[4] Dey, R., Ghosh, S., Gyurkovics, E., Ray, G.: Delay-interval-dependent stability criterion for linear systems with time-varying state delay. IFAC PapersOnLine 48 (2015), 14, 120-125. DOI 
[5] Dey, R., Ghosh, S., Ray, G., Rakshit, A.: Improved delay-dependent stabilization of time-delay systems with actuator saturation. Int. J. Robust Nonlinear Control 24 (2014), 5, 902-917. DOI  | MR 3164637
[6] Dey, R., Ray, G., Balas, V. E.: Stability and stabilization of linear and fuzzy time-delay systems: A linear matrix inequality approach. Springe, 2018. MR 3806681
[7] Ghaoui, L. El, Oustry, F., AitRami, M.: A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans. Automat. Control 42, (1997), 8, 1171-1176. DOI  | MR 1469081
[8] Fridman, E., Shaked, U.: An improved stabilization method for linear time-delay systems. IEEE Trans. Automat. Control 47 (2002), 11, 1931-1937. DOI  | MR 1937712
[9] Fridman, E., Shaked, U.: Delay-dependent stability and $H_\infty$ control: constant and time-varying delay. Int. J. Control 76 (2003), 1, 48-60. DOI  | MR 1952833
[10] Gao, H., Wang, C.: Comments and further results on "A descriptor system approach to $H_\infty$ control of linear time-delay systems. IEEE Trans. Automat. Control 48 (2003), 3, 520-525. DOI  | MR 1962266
[11] Gahinet, P., Nemirovskii, A., Laub, A. J., Chilali, M.: LMI Control Toolbox for use with MATLAB. MathWorks, Natick 1995.
[12] Gu, K., Kharitonov, V. L., Chen, J.: Stability Analysis of Time-delay Systems. Birkhauser, Boston 2003. MR 3075002
[13] Gu, K., Niculescu, S. I.: Survey on recent results in the stability and control of time-delay systems. J. Dyn. Sys. Meas. Control 125 (2003), 2, 158-165. DOI 
[14] He, Y., Wang, Q. G., Chong, L., Min, W.: Delay-range dependent stability for systems with time-varying delay. Automatica 43 (2007), 2, 371-376. DOI  | MR 2281843
[15] Kim, J. H.: Note on stability of linear systems with time-varying delays. Automatica 47 (2011), 9, 2118-2121. DOI  | MR 2886830
[16] Kim, K. H., Park, M. J., Kwon, O. M., Lee, S. M., Cha, E. J.: Stability and robust $H_\infty$ control for time-delayed systems with parameter uncertainties and stochastic disturbances. J. Engrg. Technol. 11 (2016), 1, 200-214.
[17] Li, T., Guo, L., Zhang, Y.: Delay range dependent robust stability and stabilization for uncertain systems with time-varying delay. Int. J. Robust Nonlinear Control: IFAC-Affiliated J. 18 (2008), 13, 1372-1387. DOI  | MR 2440687
[18] Li, L., Jia, Y.: Non-fragile dynamic output feedback control for linear systems with time-varying delay. IET Control Theory Appl. 3 (2009), 8, 995-1005. DOI  | MR 2561153
[19] Moon, Y. S., Park, P. G., Kwon, W. H., Lee, Y. S.: Delay-dependent robust stabilization of uncertain state-delayed systems. Int. J. Control 74 (2001), 14, 1447-1455. DOI  | MR 1857590
[20] Park, P.: A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Trans. Automat. Control 44 (1999), 4, 876-877. DOI  | MR 1684455
[21] Park, P. G., Ko, J. W., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47 (2011), 1, 235-238. DOI  | MR 2878269
[22] Ramakrishnan, K., Ray, G.: An improved delay-dependent stability criterion for a class of Lur'e systems of neutral type. J. Dynamic Systems Measurement Control 134 (2012), 011008, 1-5. DOI 
[23] Parlakci, M. A.: Improved robust stability criteria and design of robust stabilizing controller for uncertain linear time-delay systems. Int. J. Robust Nonlinear Control: IFAC-Affiliated J. 16 (2006), 13, 599-636. DOI  | MR 2250425
[24] Prasad, K. C. Rajendra, Arun, N. K., Venkatesh, M.: An improved stabilization criteria for linear systems with time-varying delay using a new Lyapunov-Krasovskii functional. In: Control and Measurement Applications for Smart Grid; Springer, Singapore 2022, pp. 335-346.
[25] Richard, J. P.: Time-delay systems: An overview of some recent advances and open problems. Automatica 39 (2003), 10, 1667-1694. DOI  | MR 2141765 | Zbl 1145.93302
[26] Seuret, A., Gouaisbaut, F.: Wirtinger based integral inequality: Application to time-delay systems. Automatica 49 (2013), 9, 2860-2866. DOI  | MR 3084475
[27] Seuret, A., Gouaisbaut, F.: Stability of linear systems with time-varying delays using Bessel-Legendre inequalities. IEEE Trans. Automat. Control. 63 (2018), 1, 225-232. DOI  | MR 3744841
[28] Sun, J., Liu, G. P., Chen, J.: Delay-dependent stability and stabilization of neutral time-delay systems. Int. Robust Nonlinear Control 19 (2009), 1364-1375. DOI  | MR 2537819
[29] Venkatesh, M., Patra, S., Ramakrishnan, K., Ray, G.: An improved stability result for linear time-delay system using a new Lyapunov-Krasovskii functional and extended reciprocally convex inequality. Int. J. Systems Sci. 49 (2018), 12, 2586-2600. DOI  | MR 3859628
[30] Venkatesh, M., Patra, S., Ray, G.: Stabilization of uncertain linear system with time-varying delay using a new Lyapunov-Krasovskii functional. In: IEEE Tencon 10 Conference 2018, pp. 205-210. DOI 
[31] Venkatesh, M., Patra, S., Ray, G.: Observer-based stabilization of linear discrete time-varying delay systems. J. Dynamic Systems Measurement Control 143 (2021), 12, 124501. DOI 
[32] Venkatesh, M., Patra, S., Ray, G.: Improved robust stability analysis and stabilization conditions for discrete-time linear systems with time-varying delay. Int. J. Automat. Control 16 (2022), 5, 547-572. DOI 
[33] Wang, C., Zhou, X., Shi, X., Jin, Y.: Robust control for uncertain variable fractional order differential systems considering time-varying delays and nonlinear perturbations. Optimal Control Appl. Methods 43 (2022), 3, 979-993. DOI  | MR 4417809
[34] Wu, M., He, Y., She, J. H.: New delay-dependent stability criteria and stabilizing method for neutral systems. IEEE Trans. Automat. Control 49 (2014), 12, 2266-2271. DOI  | MR 2106758
[35] Zhang, C. K., He, Y., Jiang, L., Wu, M., Wang, Q. G.: An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay. Automatica 85 (2017), 481-485. DOI  | MR 3712893
[36] Zhang, X. M., Han, Q. L.: New stability criterion using a matrix-based quadratic convex approach and some novel integralX inequalities. IET Control Theory Appl. 8 (2014), 12, 1054-1061. DOI  | MR 3236847
[37] Zhang, X. M., Wu, M., She, J. H., He, Y.: Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatica 41 (2005), 1405-1412. DOI  | MR 2160485
[38] Zhang, J., Xia, Y., Shi, P., Mahmoud, M. S.: New results on stability and stabilisation of systems with interval time-varying delay. IET Control Theory Appl. 5 (2011), 3, 429-436. DOI  | MR 2857652
Partner of
EuDML logo