Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$\tau$-open set; $\tau$-bounded space; functional tightness; minimal tightness
Summary:
We study the behavior of the minimal tightness and functional tightness of topological spaces under the influence of the functor of the permutation degree. Analytically: a) We introduce the notion of $\tau$-open sets and investigate some basic properties of them. b) We prove that if the map $f\colon X\rightarrow Y$ is $\tau$-continuous, then the map $SP^{n}f\colon SP^n X \rightarrow SP^n Y$ is also $\tau$-continuous. c) We show that the functor $SP^n$ preserves the functional tightness and the minimal tightness of compacts. d) Finally, we give some facts and properties on $\tau$-bounded spaces. More precisely, we prove that the functor of permutation degree $SP^n$ preserves the property of being $\tau$-bounded.
References:
[1] Arhangel'skiĭ A. V.: Functional tightness, $Q$-spaces and $\tau$-embeddings. Comment. Math. Univ. Carolin. 24 (1983), no. 1, 105–120. MR 0703930
[2] Beshimov R. B.: Some properties of the functor $O_{\beta}$. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 313 (2004), Issled. po Topol. 11, 131–134, 139 (Russian); translation in J. Math. Sci. (N.Y.) 133 (2006), no. 5, 1599–1601. MR 2091586
[3] Beshimov R. B.: Nonincrease of density and weak density under weakly normal functors. Mat. Zametki 84 (2008), no. 4, 527–531 (Russian); translation in Math. Notes 84 (2008), no. 3–4, 493–497. MR 2485193
[4] Beshimov R. B., Georgiou D. N., Mamadaliev N. K.: On $\tau$-bounded spaces and hyperspaces. Filomat 36 (2022), no. 1, 187–193. DOI 10.2298/FIL2201187B | MR 4394261
[5] Beshimov R. B., Georgiou D. N., Zhuraev R. M.: Index boundedness and uniform connectedness of space of the $G$-permutation degree. Appl. Gen. Topol. 22 (2021), no. 2, 447–459. DOI 10.4995/agt.2021.15566 | MR 4359780
[6] Beshimov R. B., Mamadaliev N. K.: On the functor of semiadditive $\tau$-smooth functionals. Topology Appl. 221 (2017), 167–177. DOI 10.1016/j.topol.2017.02.037 | MR 3624454
[7] Beshimov R. B., Mamadaliev N. K.: Categorical and topological properties of the functor of Radon functionals. Topology Appl. 275 (2020), 106998, 11 pages. DOI 10.1016/j.topol.2019.106998 | MR 4081635
[8] Beshimov R. B., Mamadaliev N. K., Èshtemirova S. K.: Categorical and cardinal properties of hyperspaces with a finite number of components. Itogi Nauki Tekh. Ser. Sovrem. Mat. Priloyh. Temat. Obz. 144 (2018), 96–103 (Russian); translation in J. Math. Sci. 245 (2020), no. 3, 390–397. MR 3829876
[9] Fedorčuk V. V.: Covariant functors in a category of compacta, absolute retracts and $Q$-manifolds. Uspekhi Mat. Nauk 36 (1981), no. 3(219), 177–195, 256 (Russian). MR 0622724
[10] Fedorchuk V. V., Filippov V. V.: Topology of hyperspaces and its applications. Current Life, Science and Technology: Series “Mathematics and Cybernetics" 89 (1989), no. 4, 48 pages (Russian). MR 1000972
[11] Fedorchuk V. V., Filippov V. V.: General Topology. The Basic Foundation, Fizmatlit, Moscow, 2006.
[12] Maya D., Pellicer-Covarrubias P., Pichardo-Mendoza R.: Cardinal functions of the hyperspace of convergent sequences. Math. Slovaca 68 (2018), no. 2, 431–450. DOI 10.1515/ms-2017-0114 | MR 3783397
[13] Michael E.: Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 (1951), 152–172. DOI 10.1090/S0002-9947-1951-0042109-4 | MR 0042109 | Zbl 0043.37902
[14] Okunev O.: The minitightness of products. Topology Appl. 208 (2016), 10–16. DOI 10.1016/j.topol.2016.05.003 | MR 3506966
[15] Okunev O., Ramírez Páramo R.: Functional tightness, $R$-quotient mappings and products. Topology Appl. 228 (2017), 236–242. DOI 10.1016/j.topol.2017.06.009 | MR 3679085
[16] Radul T.: On the functor of order-preserving functionals. Comment. Math. Univ. Carol. 39 (1998), no. 3, 609–615. MR 1666806 | Zbl 0962.54009
[17] Reznichenko E. A.: Functional and weak functional tightness. Topological Structures and Their Maps, Latv. Gos. Univ., Riga, 1987, pages 105–107. MR 0934036
Partner of
EuDML logo