Article
Keywords:
$\mathbb{R}$-factorizable; cellularity; $C$-embedded; Sorgenfrey line; $P$-group; Dieudonné completion; Hewitt--Nachbin completion; Bohr topology
Summary:
We construct a Hausdorff topological group $G$ such that $\aleph_1$ is a precalibre of $G$ (hence, $G$ has countable cellularity), all countable subsets of $G$ are closed and $C$-embedded in $G$, but $G$ is not $\mathbb{R}$-factorizable. This solves Problem 8.6.3 from the book ``Topological Groups and Related Structures" (2008) in the negative.
References:
[1] Arhangel'skiĭ A. V., Tkachenko M. G.:
Topological Groups and Related Structures. Atlantis Stud. Math., 1, Atlantis Press, Paris World Scientific Publishing Co., Hackensack, 2008.
MR 2433295
[4] Reznichenko E. A., Sipacheva O. V.:
The free topological group on the Sorgenfrey line is not $\mathbb{R}$-factorizable. Topology Appl. 160 (2013), no. 11, 1184–1187.
DOI 10.1016/j.topol.2013.04.010 |
MR 3062768
[6] Tkachenko M. G.:
Some results on inverse spectra. II. Comment. Math. Univ. Carolin. 22 (1981), no. 4, 819–841.
MR 0647029
[8] Xie L.-H., Yan P.-F.:
The continuous $d$-open homomorphism images and subgroups of $\mathbb{R}$-factorizable paratopological groups. Topology Appl. 300 (2021), Paper No. 107627, 7 pages.
MR 4281998