Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$\mathbb{R}$-factorizable; cellularity; $C$-embedded; Sorgenfrey line; $P$-group; Dieudonné completion; Hewitt--Nachbin completion; Bohr topology
Summary:
We construct a Hausdorff topological group $G$ such that $\aleph_1$ is a precalibre of $G$ (hence, $G$ has countable cellularity), all countable subsets of $G$ are closed and $C$-embedded in $G$, but $G$ is not $\mathbb{R}$-factorizable. This solves Problem 8.6.3 from the book ``Topological Groups and Related Structures" (2008) in the negative.
References:
[1] Arhangel'skiĭ A. V., Tkachenko M. G.: Topological Groups and Related Structures. Atlantis Stud. Math., 1, Atlantis Press, Paris World Scientific Publishing Co., Hackensack, 2008. MR 2433295
[2] Engelking R.: General Topology. Sigma Ser. Pure Math., 6, Heldermann, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[3] Noble N., Ulmer M.: Factoring functions on Cartesian products. Trans. Amer. Math. Soc. 163 (1972), 329–339. DOI 10.1090/S0002-9947-1972-0288721-2 | MR 0288721
[4] Reznichenko E. A., Sipacheva O. V.: The free topological group on the Sorgenfrey line is not $\mathbb{R}$-factorizable. Topology Appl. 160 (2013), no. 11, 1184–1187. DOI 10.1016/j.topol.2013.04.010 | MR 3062768
[5] Sipacheva O. V.: Free Boolean topological groups. Axioms 4 (2015), no. 4, 492–517. DOI 10.3390/axioms4040492
[6] Tkachenko M. G.: Some results on inverse spectra. II. Comment. Math. Univ. Carolin. 22 (1981), no. 4, 819–841. MR 0647029
[7] Tkachenko M. G.: Cellularity in quotient spaces of topological groups. Forum Math. 31 (2019), no. 2, 351–359. DOI 10.1515/forum-2018-0195 | MR 3918445
[8] Xie L.-H., Yan P.-F.: The continuous $d$-open homomorphism images and subgroups of $\mathbb{R}$-factorizable paratopological groups. Topology Appl. 300 (2021), Paper No. 107627, 7 pages. MR 4281998
Partner of
EuDML logo