Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
two-parameter quantum group; locally finite subalgebra; adjoint action; annihilator ideal
Summary:
Let $U$ be the two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$ and $F(U)$ the locally finite subalgebra of $U$ under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of $F(U)$ in the case when $rs^{-1}$ is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of $U$ by generators.
References:
[1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). DOI 10.1017/CBO9780511614309 | MR 2197389 | Zbl 1092.16001
[2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). DOI 10.1017/CBO9780511623608 | MR 1314422 | Zbl 0834.16001
[3] Benkart, G., Kang, S.-J., Lee, K.-H.: On the centre of two-parameter quantum groups. Proc. R. Soc. Edinb., Sect. A, Math. 136 (2006), 445-472. DOI 10.1017/S0308210500005011 | MR 2227803 | Zbl 1106.17013
[4] Benkart, G., Witherspoon, S.: Representations of two-parameter quantum groups and Schur-Weyl duality. Hopf Algebras Lecture Notes in Pure and Applied Mathematics 237. Marcel Dekker, New York (2004), 65-92. MR 2051731 | Zbl 1048.16021
[5] Benkart, G., Witherspoon, S.: Two-parameter quantum groups and Drinfel'd doubles. Algebr. Represent. Theory 7 (2004), 261-286. DOI 10.1023/B:ALGE.0000031151.86090.2e | MR 2070408 | Zbl 1113.16041
[6] Burdík, Č., Navrátil, O., Pošta, S.: The adjoint representation of quantum algebra $U_q( sl(2))$. J. Nonlinear Math. Phys. 16 (2009), 63-75. DOI 10.1142/S1402925109000066 | MR 2571814 | Zbl 1166.81337
[7] Catoiu, S.: Ideals of the enveloping algebra $U( sl_2)$. J. Algebra 202 (1998), 142-177. DOI 10.1006/jabr.1997.7284 | MR 1614186 | Zbl 0970.17009
[8] Joseph, A.: Quantum Groups and Their Primitive Ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 29. Springer, Berlin (1995). DOI 10.1007/978-3-642-78400-2 | MR 1315966 | Zbl 0808.17004
[9] Joseph, A., Letzter, G.: Local finiteness of the adjoint action for quantized enveloping algebras. J. Algebra 153 (1992), 289-318. DOI 10.1016/0021-8693(92)90157-H | MR 1198203 | Zbl 0779.17012
[10] Joseph, A., Letzter, G.: Separation of variables for quantized enveloping algebras. Am. J. Math. 116 (1994), 127-177. DOI 10.2307/2374984 | MR 1262429 | Zbl 0811.17007
[11] Kassel, C.: Quantum Groups. Graduate Texts in Mathematics 155. Springer, New York (1995). DOI 10.1007/978-1-4612-0783-2 | MR 1321145 | Zbl 0808.17003
[12] Kolb, S., Lorenz, M., Nguyen, B., Yammine, R.: On the adjoint representation of a Hopf algebra. Proc. Edinb. Math. Soc., II. Ser. 63 (2020), 1092-1099. DOI 10.1017/S0013091520000358 | MR 4197323 | Zbl 1462.16035
[13] Li, L., Zhang, P.: Quantum adjoint action for $\mathcal{U}_q( sl(2))$. Algebra Colloq. 7 (2000), 369-379. MR 1805955 | Zbl 0985.16024
[14] Li, L., Zhang, P.: Weight property for ideals of $\mathcal{U}_q( sl(2))$. Commun. Algebra 29 (2001), 4853-4870. DOI 10.1081/AGB-100106790 | MR 1856919 | Zbl 0989.17008
[15] Montgomery, S.: Hopf Algebras and Their Actions on Rings. Regional Conference Series in Mathematics 82. AMS, Providence (1993). DOI 10.1090/cbms/082 | MR 1243637 | Zbl 0793.16029
[16] Passman, D. S.: The Algebraic Structure of Group Rings. Pure and Applied Mathematics. John Wiley & Sons, New York (1977). MR 0470211 | Zbl 0368.16003
[17] Takeuchi, M.: A two-parameter quantization of $GL(n)$. Proc. Japan Acad., Ser. A 66 (1990), 112-114. DOI 10.3792/pjaa.66.112 | MR 1065785 | Zbl 0723.17012
[18] Wang, Y.: Annihilator ideals of indecomposable modules of finite-dimensional pointed Hopf algebras of rank one. Available at https://arxiv.org/abs/2205.14603v2 (2022), 21 pages.
[19] Wang, Y.: Classification of ideals of 8-dimensional Radford Hopf algebra. Czech. Math. J. 72 (2022), 1019-1028. DOI 10.21136/CMJ.2022.0313-21 | MR 4517591 | Zbl 7655778
[20] Wang, Y., Wang, Z., Li, L.: Ideals of finite-dimensional pointed Hopf algebras of rank one. Algebra Colloq. 28 (2021), 351-360. DOI 10.1142/S1005386721000274 | MR 4256338 | Zbl 1475.16035
[21] Wang, Y., Zheng, Y., Li, L.: On the ideals of the Radford Hopf algebras. Commun. Algebra 49 (2021), 4109-4122. DOI 10.1080/00927872.2021.1914073 | MR 4296825 | Zbl 1491.16034
Partner of
EuDML logo