Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
group action; Hochschild cohomology; equivariant formal deformation; equivariant cohomology
Summary:
We introduce equivariant formal deformation theory of associative algebra morphisms. We also present an equivariant deformation cohomology of associative algebra morphisms and using this we study the equivariant formal deformation theory of associative algebra morphisms. We discuss some examples of equivariant deformations and use the Maurer-Cartan equation to characterize equivariant deformations.
References:
[1] Frégier, Y.: A new cohomology theory associated to deformations of Lie algebra morphisms. Lett. Math. Phys. 70 (2004), 97-107. DOI 10.1007/s11005-004-4289-0 | MR 2108705 | Zbl 1136.17306
[2] Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. (2) 78 (1963), 267-288. DOI 10.2307/1970343 | MR 0161898 | Zbl 0131.27302
[3] Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math. (2) 79 (1964), 59-103. DOI 10.2307/1970484 | MR 0171807 | Zbl 0123.03101
[4] Gerstenhaber, M.: On the deformation of rings and algebras. II. Ann. Math. (2) 84 (1966), 1-19. DOI 10.2307/1970528 | MR 0207793 | Zbl 0147.28903
[5] Gerstenhaber, M.: On the deformation of rings and algebras. III. Ann. Math. (2) 88 (1968), 1-34. DOI 10.2307/1970553 | MR 0240167 | Zbl 0182.05902
[6] Gerstenhaber, M.: On the deformation of rings and algebras. IV. Ann. Math. (2) 99 (1974), 257-276. DOI 10.2307/1970900 | MR 0389978 | Zbl 0281.16016
[7] Gerstenhaber, M., Schack, S. D.: On the deformation of algebra morphisms and diagrams. Trans. Am. Math. Soc. 279 (1983), 1-50. DOI 10.1090/S0002-9947-1983-0704600-5 | MR 0704600 | Zbl 0544.18005
[8] Gerstenhaber, M., Schack, S. D.: On the cohomology of an algebra morphism. J. Algebra 95 (1985), 245-262. DOI 10.1016/0021-8693(85)90104-8 | MR 0797666 | Zbl 0595.16021
[9] Kodaira, K., Spencer, D. C.: On deformations of complex analytic structures. I. Ann. Math. (2) 67 (1958), 328-401. DOI 10.2307/1970009 | MR 0112154 | Zbl 0128.16901
[10] Kodaira, K., Spencer, D. C.: On deformations of complex analytic structures. II. Ann. Math. (2) 67 (1958), 403-466. DOI 10.2307/1969867 | MR 0112154 | Zbl 1307.14016
[11] Kodaira, K., Spencer, D. C.: On deformations of complex analytic structures. III: Stability theorems for complex structures. Ann. Math. (2) 71 (1960), 43-76. DOI 10.2307/1969879 | MR 0115189 | Zbl 0128.16902
[12] Majumdar, A., Mukherjee, G.: Deformation theory of dialgebras. $K$-Theory 27 (2002), 33-60. DOI 10.1023/A:1020833326579 | MR 1936584 | Zbl 1016.16026
[13] Mandal, A.: Deformation of Leibniz algebra morphisms. Homology Homotopy Appl. 9 (2007), 439-450. DOI 10.4310/HHA.2007.v9.n1.a17 | MR 2299806 | Zbl 1162.17002
[14] Mukherjee, G., Yadav, R. B.: Equivariant one-parameter deformations of associative algebras. J. Algebra Appl. 19 (2020), Article ID 2050114, 18 pages. DOI 10.1142/S0219498820501145 | MR 4120091 | Zbl 1440.13064
[15] A. Nijenhuis, R. W. Richardson, Jr.: Cohomology and deformations in graded Lie algebras. Bull. Am. Math. Soc. 72 (1966), 1-29. DOI 10.1090/S0002-9904-1966-11401-5 | MR 0195995 | Zbl 0136.30502
[16] A. Nijenhuis, R. W. Richardson, Jr.: Deformations of homomorphisms of Lie groups and Lie algebras. Bull. Am. Math. Soc. 73 (1967), 175-179. DOI 10.1090/S0002-9904-1967-11703-8 | MR 0204575 | Zbl 0153.04402
[17] Yau, D.: Deformation theory of dialgebra morphisms. Algebra Colloq. 15 (2008), 279-292. DOI 10.1142/S1005386708000254 | MR 2400183 | Zbl 1177.17004
Partner of
EuDML logo