[2] Ainseba, B.:
Corrigendum to ``Exact and approximate controllability of the age and space population dynamics structured model'' (J. Math. Anal. Appl. 275 (2) (2002), 562-574). J. Math. Anal. Appl. 393 (2012), 328.
DOI 10.1016/j.jmaa.2012.01.059 |
MR 2921673 |
Zbl 1260.92095
[4] Ainseba, B., Aniţa, S.:
Internal exact controllability of the linear population dynamics with diffusion. Electron. J. Differ. Equ. 2004 (2004), Article ID 112, 11 pages.
MR 2108883 |
Zbl 1134.93311
[6] Ainseba, B., Echarroudi, Y., Maniar, L.:
Null controllability of a population dynamics with degenerate diffusion. Differ. Integral Equ. 26 (2013), 1397-1410.
MR 3129015 |
Zbl 1313.35193
[8] Hassi, E. M. Ait Ben, Khodja, F. Ammar, Hajjaj, A., Maniar, L.:
Null controllability of degenerate parabolic cascade systems. Port. Math. (N.S.) 68 (2011), 345-367.
DOI 10.4171/PM/1895 |
MR 2832802 |
Zbl 1231.35103
[13] Boutaayamou, I., Echarroudi, Y.:
Null controllability of population dynamics with interior degeneracy. Electron. J. Differ. Equ. 2017 (2017), Article ID 131, 21 pages.
MR 3665593 |
Zbl 1370.35183
[15] Boutaayamou, I., Salhi, J.:
Null controllability for linear parabolic cascade systems with interior degeneracy. Electron. J. Differ. Equ. 2016 (2016), Article ID 305, 22 pages.
MR 3604750 |
Zbl 1353.35184
[18] Cannarsa, P., Fragnelli, G.:
Null controllability of semilinear degenerate parabolic equations in bounded domains. Electron. J. Differ. Equ. 2006 (2006), Article ID 136, 20 pages.
MR 2276561 |
Zbl 1112.35335
[21] Cannarsa, P., Fragnelli, G., Vancostenoble, J.:
Linear degenerate parabolic equations in bounded domains: Controllability and observability. Systems, Control, Modeling and Optimization IFIP International Federation for Information Processing 202. Springer, New York (2006), 163-173.
DOI 10.1007/0-387-33882-9_15 |
MR 2241704 |
Zbl 1214.93021
[24] Cannarsa, P., Martinez, P., Vancostenoble, J.:
Null controllability of degenerate heat equations. Adv. Differ. Equ. 10 (2005), 153-190.
MR 2106129 |
Zbl 1145.35408
[26] Echarroudi, Y., Maniar, L.:
Null controllability of a model in population dynamics. Electron. J. Differ. Equ. 2014 (2014), Article ID 240, 20 pages.
MR 3291740 |
Zbl 06430755
[27] Echarroudi, Y., Maniar, L.:
Null controllability of a degenerate cascade model in population dynamics. Studies in Evolution Equations and Related Topics STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer, Cham (2021), 211-268.
DOI 10.1007/978-3-030-77704-3_10 |
MR 4367456 |
Zbl 07464638
[35] Fragnelli, G., Mugnai, D.:
Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations. Mem. Am. Math. Soc. 1146 (2016), 88 pages.
DOI 10.1090/memo/1146 |
MR 3498150 |
Zbl 1377.93043
[37] Fursikov, A. V., Imanuvilov, O. Y.:
Controllability of Evolutions Equations. Lecture Notes Series, Seoul 34. Seoul National University, Seoul (1996).
MR 1406566 |
Zbl 0862.49004
[38] Hajjaj, A., Maniar, L., Salhi, J.:
Carleman estimates and null controllability of degenerate/singular parabolic systems. Electron. J. Differ. Equ. 2016 (2016), Article ID 292, 25 pages.
MR 3578313 |
Zbl 1353.35186
[41] Juska, A., Gouveia, L., Gabriel, J., Koneck, S.:
Negotiating bacteriological meat contamination standards in the US: The case of $\it E. Coli$ O157:H7. Sociologia Ruralis 40 (2000), 249-271.
DOI 10.1111/1467-9523.00146
[45] Liu, X., Huang, Q.:
The dynamics of a harvested predator-prey system with Holling type IV functional response. Biosystems 169-170 (2018), 26-39.
DOI 10.1016/j.biosystems.2018.05.005
[58] Webb, G. F.:
Population models structured by age, size, and spatial position. Structured Population Models in Biology and Epidemiology Lecture Notes in Mathematics 1936. Springer, Berlin (2008), 1-49.
DOI 10.1007/978-3-540-78273-5_1 |
MR 2433574
[59] Zhang, Y., Xu, Z., Liu, B., Chen, L.:
Dynamic analysis of a Holling I predator-prey system with mutual interference concerning pest control. J. Biol. Syst. 13 (2005), 45-58.
DOI 10.1142/S0218339005001392 |
Zbl 1073.92061