Previous |  Up |  Next

Article

Keywords:
boundedness; nonlinear; differential equation of third order; integral inequality
Summary:
We consider certain class of second order nonlinear nonautonomous delay differential equations of the form $$ a(t)x^{\prime \prime } + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ) $$ and $$ (a(t)x^\prime )^\prime + b(t)g(x,x^\prime ) + c(t)h(x(t-r))m(x^\prime ) = p(t,x,x^\prime ), $$ where $a$, $b$, $c$, $g$, $h$, $m$ and $p$ are real valued functions which depend at most on the arguments displayed explicitly and $r$ is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski\v ı functional to establish our results. This work extends and improve on some results in the literature.
References:
[1] Adams, D. O., Olutimo, A. L.: Some results on the boundedness of solutions of a certain third order non-autonomous differential equations with delay. Adv. Stud. Contemp. Math., Kyungshang 29 (2019), 237-249. Zbl 1438.34234
[2] Ademola, A. T., Moyo, S., Ogundare, B. S., Ogundiran, M. O., Adesina, O. A.: New conditions on the solutions of a certain third order delay differential equations with multiple deviating arguments. Differ. Uravn. Protsessy Upr. 2019 (2019), 33-69. MR 3935484 | Zbl 1414.34053
[3] Afuwape, A. U., Omeike, M. O.: On the stability and boundedness of solutions of a kind of third order delay differential equations. Appl. Math. Comput. 200 (2008), 444-451. DOI 10.1016/j.amc.2007.11.037 | MR 2421659 | Zbl 1316.34070
[4] Antosiewicz, H. A.: On nonlinear differential equations of the second order with integrable forcing term. J. Lond. Math. Soc. 30 (1955), 64-67. DOI 10.1112/jlms/s1-30.1.64 | MR 0065752 | Zbl 0064.08404
[5] Athanassov, Z. S.: Boundedness criteria for solutions of certain second order nonlinear differential equations. J. Math. Anal. Appl. 123 (1987), 461-479. DOI 10.1016/0022-247X(87)90324-6 | MR 0883702 | Zbl 0642.34031
[6] Bellman, R., Cooke, K. L.: Differential-Difference Equations. Mathematics in Science and Engineering 6. Academic Press, New York (1963). MR 0147745 | Zbl 0105.06402
[7] Bihari, I.: Researches of the boundedness and stability of the solutions of non-linear differential equations. Acta Math. Acad. Sci. Hung. 8 (1957), 261-278. DOI 10.1007/BF02020315 | MR 0094516 | Zbl 0097.29301
[8] Burton, T. A.: The generalized Lienard equation. J. SIAM Control, Ser. A 3 (1965), 223-230. DOI 10.1137/0303018 | MR 0190462 | Zbl 0135.30201
[9] Burton, T. A.: Stability and Periodic Solutions of Ordinary and Functional Differential Equations. Mathematics in Science and Engineering 178. Academic Press, Orlando (1985). DOI 10.1016/s0076-5392(09)x6019-4 | MR 0837654 | Zbl 0635.34001
[10] Burton, T. A., Grimmer, R. C.: Stability properties of $(r(t)u^\prime)^\prime + a(t)f(u)g(u^\prime) = 0$. Monastsh. Math. 74 (1970), 211-222. DOI 10.1007/BF01303441 | MR 0262613 | Zbl 0195.09804
[11] Burton, T. A., Hatvani, L.: Stability theorems for nonautonomous functional differential equations by Liapunov functionals. Tohoku Math. J., II. Ser. 41 (1989), 65-104. DOI 10.2748/tmj/1178227868 | MR 0985304 | Zbl 0677.34060
[12] Burton, T. A., Hering, R. H.: Liapunov theory for functional differential equations. Rocky Mt. J. Math. 24 (1994), 3-17. DOI 10.1216/rmjm/1181072449 | MR 1270024 | Zbl 0806.34067
[13] Burton, T. A., Makay, G.: Asymptotic stability for functional differential equations. Acta Math. Hung. 65 (1994), 243-251. DOI 10.1007/BF01875152 | MR 1281434 | Zbl 0805.34068
[14] Driver, R. D.: Ordinary and Delay Differential Equations. Applied Mathematical Sciences 20. Springer, New York (1977). DOI 10.1007/978-1-4684-9467-9 | MR 0477368 | Zbl 0374.34001
[15] Dvořáková, S.: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: Doctoral Thesis. Brno University of Technology, Brno (2011).
[16] \`El'sgol'ts, L. \`E.: Introduction to the Theory of Differential Equations with Deviating Arguments. McLaughin Holden-Day, San Francisco (1966). MR 0192154 | Zbl 0133.33502
[17] Èl'sgol'ts, L. È., Norkin, S. B.: Introduction to the Theory and Application of Differential Equations with Deviating Arguments. Mathematics in Science and Engineering 105. Academic Press, New York (1973). DOI 10.1016/s0076-5392(08)x6170-3 | MR 0352647 | Zbl 0287.34073
[18] Gabsi, H., Ardjouni, A., Djoudi, A.: New technique in asymptotic stability for third-order nonlinear delay differential equations. Math. Eng. Sci. Aerospace 9 (2018), 315-330. MR 4088058
[19] Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Mathematics and its Applications 74. Kluwer Academic, Dordrecht (1992). DOI 10.1007/978-94-015-7920-9 | MR 1163190 | Zbl 0752.34039
[20] Graef, J. R., Spikes, P. W.: Asymptotic behavior of solutions of a second order nonlinear differential equation. J. Differ. Equations 17 (1975), 461-476. DOI 10.1016/0022-0396(75)90056-X | MR 0361275 | Zbl 0298.34028
[21] Graef, J. R., Spikes, P. W.: Continuability, boundedness, and convergence to zero of solutions of a perturbed nonlinear ordinary differential equation. Czech. Math. J. 45 (1995), 663-683. DOI 10.21136/CMJ.1995.128549 | MR 1354925 | Zbl 0851.34050
[22] Hale, J. K.: Theory of Functional Differential Equations. Applied Mathematical Sciences 3. Springer, New York (1977). DOI 10.1007/978-1-4612-9892-2 | MR 0508721 | Zbl 0352.34001
[23] Hildebrandt, T. H.: Introduction to the Theory of Integration. Pure and Applied Mathematics 13. Academic Press, New York (1963). MR 0154957 | Zbl 0112.28302
[24] Jones, G. S.: Fundamental inequalities for discrete and discontinuous functional equations. J. Soc. Ind. Appl. Math. 12 (1964), 43-57. DOI 10.1137/0112004 | MR 0162069 | Zbl 0154.05702
[25] Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations. Mathematics and its Applications 463. Klumer Academic, Dordrecht (1999). DOI 10.1007/978-94-017-1965-0 | MR 1680144 | Zbl 0917.34001
[26] Kolmanovskii, V. B., Nosov, V. R.: Stability of Functional Differential Equations. Mathematics in Science and Engineering 180. Academic Press, London (1986). MR 0860947 | Zbl 0593.34070
[27] Krasovskii, N. N.: Stability of Motion: Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay. Stanford University Press, Stanford (1963). MR 0147744 | Zbl 0109.06001
[28] Lalli, B. S.: On the boundedness of solutions of certain second-order differential equations. J. Math. Anal. Appl. 25 (1969), 182-188. DOI 10.1016/0022-247X(69)90221-2 | MR 0239184
[29] Legatos, G. G.: Contribution to the qualitative theory of ordinary differential equations. Bull. Soc. Math. Grèce, N. Ser. 2 (1961), 1-44 Greek. MR 0140770 | Zbl 0107.29202
[30] Mahmoud, A. M., Tunç, C.: Asymptotic stability of solutions of a kind of third-order stochastic differential equations with delays. Miskolc Math. Notes 20 (2019), 381-393. DOI 10.18514/MMN.2019.2800 | MR 3986654 | Zbl 1438.34255
[31] V., J. E. Nápoles: A note on the qualitative behaviour of some second order nonlinear differential equations. Divulg. Mat. 10 (2002), 91-99. MR 1946903 | Zbl 1039.34030
[32] Ogundare, B. S., Ademola, A. T., Ogundiran, M. O., Adesina, O. A.: On the qualitative behaviour of solutions to certain second order nonlinear differential equation with delay. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 63 (2017), 333-351. DOI 10.1007/s11565-016-0262-y | MR 3712445 | Zbl 1387.34096
[33] Olehnik, S. N.: The boundedness of solutions of a second-order differential equation. Differ. Equations 9 (1973), 1530-1534. MR 0333345 | Zbl 0313.34031
[34] Olutimo, A. L., Adams, D. O.: On the stability and boundedness of solutions of certain non-autonomous delay differential equation of third order. Appl. Math. 7 (2016), 457-467. DOI 10.4236/am.2016.76041
[35] Omeike, M. O.: New results on the stability of solution of some non-autonomous delay differential equations of the third order. Differ. Uravn. Protsessy Upr. 2010 (2010), 18-29. MR 2766411 | Zbl 1476.34152
[36] Omeike, M. O., Adeyanju, A. A., Adams, D. O.: Stability and boundedness of solutions of certain vector delay differential equations. J. Niger. Math. Soc. 37 (2018), 77-87. MR 3853844 | Zbl 1474.34504
[37] Opial, Z.: Sur les solutions de l'equation différentielle $x^{\prime\prime} + h(x)x^\prime + f(x) = e(t)$. Ann. Pol. Math. 8 (1960), 71-74 French. DOI 10.4064/ap-8-1-65-69 | MR 0113009 | Zbl 0089.07002
[38] Peng, Q.: Qualitative analysis for a class of second-order nonlinear system with delay. Appl. Math. Mech., Engl. Ed. 22 (2001), 842-845. DOI 10.1023/A:1016373806172 | MR 1853095 | Zbl 0988.34060
[39] Rao, M. Rama Mohana: Ordinary Differential Equations: Theory and Applications. Affiliated East-West Press, New Delhi (1980). MR 0587850 | Zbl 0482.34001
[40] Remili, M., Beldjerd, D.: A boundedness and stability results for a kind of third order delay differential equations. Appl. Appl. Math. 10 (2015), 772-782. MR 3447611 | Zbl 1331.34135
[41] Remili, M., Beldjerd, D.: Stability and ultimate boundedness of solutions of some third order differential equations with delay. J. Assoc. Arab Universit. Basic Appl. Sci. 23 (2017), 90-95. DOI 10.1016/j.jaubas.2016.05.002 | MR 3752693
[42] Tejumola, H. O.: Boundedness criteria for solutions of some second-order differential equations. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 50 (1971), 432-437. MR 0306619 | Zbl 0235.34081
[43] Tunç, C.: On the stability of solutions for non-autonomous delay differential equations of third-order. Iran. J. Sci. Technol., Trans. A, Sci. 32 (2008), 261-273. MR 2683011 | Zbl 1364.34107
[44] Tunç, C.: On the stability and boundedness of solutions of nonlinear third order differential equations with delay. Filomat 24 (2010), 1-10. DOI 10.2298/FIL1003001T | MR 2791725 | Zbl 1299.34244
[45] Tunç, C.: On the qualitative behaviours of solutions to a kind of nonlinear third order differential equations with retarded argument. Ital. J. Pure Appl. Math. 28 (2011), 273-284. MR 2922501 | Zbl 1248.34109
[46] Tunç, C.: Stability and boundedness of solutions of non-autonomous differential equations of second order. J. Comput. Anal. Appl. 13 (2011), 1067-1074. MR 2789545 | Zbl 1227.34054
[47] Tunç, C.: Stability to vector Liénard equation with constant deviating argument. Nonlinear Dyn. 73 (2013), 1245-1251. DOI 10.1007/s11071-012-0704-8 | MR 3083777 | Zbl 1281.34102
[48] Tunç, C.: A note on the stability and boundedness of non-autonomous differential equations of second order with a variable deviating arguments. Afrika Math. 25 (2014), 417-425. DOI 10.1007/s13370-012-126-2 | MR 3207028 | Zbl 1306.34113
[49] Tunç, C.: Global stability and boundedness of solutions to differential equations of third order with multiple delays. Dyn. Syst. Appl. 24 (2015), 467-478. MR 3445827 | Zbl 1335.34117
[50] Tunç, C.: Stability and boundedness in differential systems of third order with variable delay. Proyecciones 35 (2016), 317-338. DOI 10.4067/S0716-09172016000300008 | MR 3552443 | Zbl 1384.34082
[51] Tunç, C.: On the properties of solutions for a system of nonlinear differential equations of second order. Int. J. Math. Comput. Sci. 14 (2019), 519-534. MR 3923306 | Zbl 1417.34122
[52] Tunç, C., Erdur, S.: New qualitative results for solutions of functional differential equations of second order. Discrete Dyn. Nat. Soc. 2018 (2018), Article ID 3151742, 13 pages. DOI 10.1155/2018/3151742 | MR 3866998 | Zbl 1417.34166
[53] Tunç, C., Tunç, O.: On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order. J. Adv. Research 7 (2016), 165-168. DOI 10.1016/j.jare.2015.04.005
[54] Tunç, C., Tunç, O.: A note on the stability and boundedness of solutions to non-linear differential systems of second order. J. Assoc. Arab Universit. Basic Appl. Sci. 24 (2017), 169-175. DOI 10.1016/j.jaubas.2016.12.004
[55] Tunç, C., Tunç, O.: Qualitative analysis for a variable delay system of differential equations of second order. J. Taibah Univ. Sci. 13 (2019), 468-477. DOI 10.1080/16583655.2019.1595359
[56] Willett, D. W., Wong, J. S. W.: The boundedness of solutions of the equation $x^{\prime\prime} +f(x,x^\prime)+ g(x)=0$. SIAM J. Appl. Math. 14 (1966), 1084-1098. DOI 10.1137/0114087 | MR 0208091 | Zbl 0173.34703
[57] Willett, D. W., Wong, J. S. W.: Some properties of the solutions of $(p(t)x^\prime)^\prime + q(t)f(x)=0$. J. Math. Anal. Appl. 23 (1968), 15-24. DOI 10.1016/0022-247X(68)90112-1 | MR 0226117 | Zbl 0165.40803
[58] Wong, J. S. W.: Some properties of solutions of $u^{\prime\prime} + a(t)f(u)g(u^\prime) = 0$. III. SIAM J. Appl. Math. 14 (1966), 209-214. DOI 10.1137/0114017 | MR 0203167 | Zbl 0143.31803
[59] Wong, J. S. W., Burton, T. A.: Some properties of solutions of $u^{\prime\prime} + a(t)f(u)g(u^\prime) = 0$. II. Monatsh. Math. 69 (1965), 368-374. DOI 10.1007/BF01297623 | MR 0186885 | Zbl 0142.06402
[60] Yao, H., Wang, J.: Globally asymptotic stability of a kind of third-order delay differential system. Int. J. Nonlinear Sci. 10 (2010), 82-87. MR 2721073 | Zbl 1235.34198
[61] Yoshizawa, T.: Stability Theory by Lyapunov's Second Method. Publications of the Mathematical Society of Japan 9. Mathematical Society of Japan, Tokyo (1966). MR 0208086 | Zbl 0144.10802
[62] Zarghamee, M. S., Mehri, B.: A note on boundedness of solutions of certain second-order differential equations. J. Math. Anal. Appl. 31 (1970), 504-508. DOI 10.1016/0022-247X(70)90003-X | MR 0265686 | Zbl 0229.34031
[63] Zhang, B.: On the retarded Liénard equation. Proc. Am. Math. Soc. 115 (1992), 779-785. DOI 10.1090/S0002-9939-1992-1094508-1 | MR 1094508 | Zbl 0756.34075
[64] Zhang, B.: Necessary and sufficient conditions for boundedness and oscillation in the retarded Liénard equation. J. Math. Anal. Appl. 200 (1996), 453-473. DOI 10.1006/jmaa.1996.0216 | MR 1391161 | Zbl 0855.34090
Partner of
EuDML logo