[1] Adams, D. O., Olutimo, A. L.:
Some results on the boundedness of solutions of a certain third order non-autonomous differential equations with delay. Adv. Stud. Contemp. Math., Kyungshang 29 (2019), 237-249.
Zbl 1438.34234
[2] Ademola, A. T., Moyo, S., Ogundare, B. S., Ogundiran, M. O., Adesina, O. A.:
New conditions on the solutions of a certain third order delay differential equations with multiple deviating arguments. Differ. Uravn. Protsessy Upr. 2019 (2019), 33-69.
MR 3935484 |
Zbl 1414.34053
[6] Bellman, R., Cooke, K. L.:
Differential-Difference Equations. Mathematics in Science and Engineering 6. Academic Press, New York (1963).
MR 0147745 |
Zbl 0105.06402
[15] Dvořáková, S.: The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations: Doctoral Thesis. Brno University of Technology, Brno (2011).
[16] \`El'sgol'ts, L. \`E.:
Introduction to the Theory of Differential Equations with Deviating Arguments. McLaughin Holden-Day, San Francisco (1966).
MR 0192154 |
Zbl 0133.33502
[18] Gabsi, H., Ardjouni, A., Djoudi, A.:
New technique in asymptotic stability for third-order nonlinear delay differential equations. Math. Eng. Sci. Aerospace 9 (2018), 315-330.
MR 4088058
[23] Hildebrandt, T. H.:
Introduction to the Theory of Integration. Pure and Applied Mathematics 13. Academic Press, New York (1963).
MR 0154957 |
Zbl 0112.28302
[26] Kolmanovskii, V. B., Nosov, V. R.:
Stability of Functional Differential Equations. Mathematics in Science and Engineering 180. Academic Press, London (1986).
MR 0860947 |
Zbl 0593.34070
[27] Krasovskii, N. N.:
Stability of Motion: Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay. Stanford University Press, Stanford (1963).
MR 0147744 |
Zbl 0109.06001
[29] Legatos, G. G.:
Contribution to the qualitative theory of ordinary differential equations. Bull. Soc. Math. Grèce, N. Ser. 2 (1961), 1-44 Greek.
MR 0140770 |
Zbl 0107.29202
[31] V., J. E. Nápoles:
A note on the qualitative behaviour of some second order nonlinear differential equations. Divulg. Mat. 10 (2002), 91-99.
MR 1946903 |
Zbl 1039.34030
[32] Ogundare, B. S., Ademola, A. T., Ogundiran, M. O., Adesina, O. A.:
On the qualitative behaviour of solutions to certain second order nonlinear differential equation with delay. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 63 (2017), 333-351.
DOI 10.1007/s11565-016-0262-y |
MR 3712445 |
Zbl 1387.34096
[33] Olehnik, S. N.:
The boundedness of solutions of a second-order differential equation. Differ. Equations 9 (1973), 1530-1534.
MR 0333345 |
Zbl 0313.34031
[34] Olutimo, A. L., Adams, D. O.:
On the stability and boundedness of solutions of certain non-autonomous delay differential equation of third order. Appl. Math. 7 (2016), 457-467.
DOI 10.4236/am.2016.76041
[35] Omeike, M. O.:
New results on the stability of solution of some non-autonomous delay differential equations of the third order. Differ. Uravn. Protsessy Upr. 2010 (2010), 18-29.
MR 2766411 |
Zbl 1476.34152
[36] Omeike, M. O., Adeyanju, A. A., Adams, D. O.:
Stability and boundedness of solutions of certain vector delay differential equations. J. Niger. Math. Soc. 37 (2018), 77-87.
MR 3853844 |
Zbl 1474.34504
[39] Rao, M. Rama Mohana:
Ordinary Differential Equations: Theory and Applications. Affiliated East-West Press, New Delhi (1980).
MR 0587850 |
Zbl 0482.34001
[40] Remili, M., Beldjerd, D.:
A boundedness and stability results for a kind of third order delay differential equations. Appl. Appl. Math. 10 (2015), 772-782.
MR 3447611 |
Zbl 1331.34135
[41] Remili, M., Beldjerd, D.:
Stability and ultimate boundedness of solutions of some third order differential equations with delay. J. Assoc. Arab Universit. Basic Appl. Sci. 23 (2017), 90-95.
DOI 10.1016/j.jaubas.2016.05.002 |
MR 3752693
[42] Tejumola, H. O.:
Boundedness criteria for solutions of some second-order differential equations. Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 50 (1971), 432-437.
MR 0306619 |
Zbl 0235.34081
[43] Tunç, C.:
On the stability of solutions for non-autonomous delay differential equations of third-order. Iran. J. Sci. Technol., Trans. A, Sci. 32 (2008), 261-273.
MR 2683011 |
Zbl 1364.34107
[45] Tunç, C.:
On the qualitative behaviours of solutions to a kind of nonlinear third order differential equations with retarded argument. Ital. J. Pure Appl. Math. 28 (2011), 273-284.
MR 2922501 |
Zbl 1248.34109
[46] Tunç, C.:
Stability and boundedness of solutions of non-autonomous differential equations of second order. J. Comput. Anal. Appl. 13 (2011), 1067-1074.
MR 2789545 |
Zbl 1227.34054
[49] Tunç, C.:
Global stability and boundedness of solutions to differential equations of third order with multiple delays. Dyn. Syst. Appl. 24 (2015), 467-478.
MR 3445827 |
Zbl 1335.34117
[51] Tunç, C.:
On the properties of solutions for a system of nonlinear differential equations of second order. Int. J. Math. Comput. Sci. 14 (2019), 519-534.
MR 3923306 |
Zbl 1417.34122
[53] Tunç, C., Tunç, O.:
On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order. J. Adv. Research 7 (2016), 165-168.
DOI 10.1016/j.jare.2015.04.005
[54] Tunç, C., Tunç, O.:
A note on the stability and boundedness of solutions to non-linear differential systems of second order. J. Assoc. Arab Universit. Basic Appl. Sci. 24 (2017), 169-175.
DOI 10.1016/j.jaubas.2016.12.004
[55] Tunç, C., Tunç, O.:
Qualitative analysis for a variable delay system of differential equations of second order. J. Taibah Univ. Sci. 13 (2019), 468-477.
DOI 10.1080/16583655.2019.1595359
[56] Willett, D. W., Wong, J. S. W.:
The boundedness of solutions of the equation $x^{\prime\prime} +f(x,x^\prime)+ g(x)=0$. SIAM J. Appl. Math. 14 (1966), 1084-1098.
DOI 10.1137/0114087 |
MR 0208091 |
Zbl 0173.34703
[60] Yao, H., Wang, J.:
Globally asymptotic stability of a kind of third-order delay differential system. Int. J. Nonlinear Sci. 10 (2010), 82-87.
MR 2721073 |
Zbl 1235.34198
[61] Yoshizawa, T.:
Stability Theory by Lyapunov's Second Method. Publications of the Mathematical Society of Japan 9. Mathematical Society of Japan, Tokyo (1966).
MR 0208086 |
Zbl 0144.10802