Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
$p$-Laplacian operator; quasilinear elliptic PDE; critical point and value; optimization algorithm; gradient method
Summary:
We present a novel approach to solving a specific type of quasilinear boundary value problem with $p$-Laplacian that can be considered an alternative to the classic approach based on the mountain pass theorem. We introduce a new way of proving the existence of nontrivial weak solutions. We show that the nontrivial solutions of the problem are related to critical points of a certain functional different from the energy functional, and some solutions correspond to its minimum. This idea is new even for $p=2$. We present an algorithm based on the introduced theory and apply it to the given problem. The algorithm is illustrated by numerical experiments and compared with the classic approach.
References:
[1] Ambrosetti, A., Rabinowitz, P. H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 349-381 \99999DOI99999 10.1016/0022-1236(73)90051-7 . DOI 10.1016/0022-1236(73)90051-7 | MR 0370183 | Zbl 0273.49063
[2] Bailová, M., Bouchala, J.: A mountain pass algorithm for quasilinear boundary value problem with $p$-Laplacian. Math. Comput. Simul. 189 (2021), 291-304 \99999DOI99999 10.1016/j.matcom.2021.03.006 . MR 4297869 | Zbl 07431491
[3] Barutello, V., Terracini, S.: A bisection algorithm for the numerical mountain pass. NoDEA, Nonlinear Differ. Equ. Appl. 14 (2007), 527-539 \99999DOI99999 10.1007/s00030-007-4065-9 . MR 2374198 | Zbl 1141.46036
[4] Bouchala, J., Drábek, P.: Strong resonance for some quasilinear elliptic equations. J. Math. Anal. Appl. 245 (2000), 7-19 \99999DOI99999 10.1006/jmaa.2000.6713 . MR 1756573 | Zbl 0970.35062
[5] Chen, G., Zhou, J., Ni, W.-M.: Algorithms and visualization for solutions of nonlinear elliptic equations. Int. J. Bifurcation Chaos Appl. Sci. Eng. 10 (2000), 1565-1612 \99999DOI99999 10.1142/S0218127400001006 . MR 1780923 | Zbl 1090.65549
[6] Choi, Y. S., McKenna, P. J.: A mountain pass method for the numerical solution of semilinear elliptic problems. Nonlinear Anal., Theory Methods Appl. 20 (1993), 417-437 \99999DOI99999 10.1016/0362-546X(93)90147-K . MR 1206432 | Zbl 0779.35032
[7] Ding, Z., Costa, D., Chen, G.: A high-linking algorithm for sign-changing solutions of semilinear elliptic equations. Nonlinear Anal., Theory Methods Appl. 38 (1999), 151-172 \99999DOI99999 10.1016/S0362-546X(98)00086-8 . MR 1697049 | Zbl 0941.35023
[8] Drábek, P., Kufner, A., Nicolosi, F.: Quasilinear Elliptic Equations with Degenerations and Singularities. de Gruyter Series in Nonlinear Analysis and Applications 5. Walter de Gruyter, Berlin (1997),\99999DOI99999 10.1515/9783110804775 . MR 1460729 | Zbl 0894.35002
[9] Horák, J.: Constrained mountain pass algorithm for the numerical solution of semilinear elliptic problems. Numer. Math. 98 (2004), 251-276 \99999DOI99999 10.1007/s00211-004-0544-7 . MR 2092742 | Zbl 1058.65129
[10] Horák, J., Holubová, G., (eds.), P. Nečesal: Proceedings of Seminar in Differential Equations: Deštné v Orlických horách, May 21-25, 2012. Volume I. Mountain Pass and Its Applications in Analysis and Numerics. University of West Bohemia, Pilsen (2012) .
[11] Huang, Y. Q., Li, R., Liu, W.: Preconditioned descent algorithms for $p$-Laplacian. J. Sci. Comput. 32 (2007), 343-371. DOI 10.1007/s10915-007-9134-z | MR 2320575 | Zbl 1134.65079
[12] Kippenhahn, R., Weigert, A., Weiss, A.: Stellar Structure and Evolution. Astronomy and Astrophysics Library. Springer, Berlin (2012). DOI 10.1007/978-3-642-30304-3
[13] Li, Y., Zhou, J.: A minimax method for finding multiple critical points and its applications to semilinear PDEs. SIAM J. Sci. Comput. 23 (2001), 840-865 \99999DOI99999 10.1137/S1064827599365641 . MR 1860967 | Zbl 1002.35004
[14] Shen, Q.: A meshless scaling iterative algorithm based on compactly supported radial basis functions for the numerical solution of Lane-Emden-Fowler equation. Numer. Methods Partial Differ. Equations 28 (2012), 554-572 \99999DOI99999 10.1002/num.20635 . MR 2879794 | Zbl 1457.65232
[15] Struwe, M.: Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge 34. Springer, Berlin (2000),\99999DOI99999 10.1007/978-3-662-04194-9 . MR 1736116 | Zbl 0939.49001
[16] Tacheny, N., Troestler, C.: A mountain pass algorithm with projector. J. Comput. Appl. Math. 236 (2012), 2025-2036 \99999DOI99999 10.1016/j.cam.2011.11.011 . MR 2863532 | Zbl 1245.65075
[17] Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications 24. Birkhäuser, Boston (1996),\99999DOI99999 10.1007/978-1-4612-4146-1 . MR 1400007 | Zbl 0856.49001
[18] Yao, X., Zhou, J.: A minimax method for finding multiple critical points in Banach spaces and its application to quasi-linear elliptic PDE. SIAM J. Sci. Comput. 26 (2005), 1796-1809. DOI 10.1137/S1064827503430503 | MR 2142597 | Zbl 1078.58009
Partner of
EuDML logo