[1] Abdelaziz, A. Y., Almoataz, Y.: Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems. Springer, 2020.
[2] Algazar, M. M, El-Halim, H. A., Salem, M. E. El Kotb, al., et:
Maximum power point tracking using fuzzy logic control. Int. J. Electr.Power Energy Systems 39 (2012), 1, 21-28.
DOI
[3] Artstein, Z.:
Stabilization with relaxed controls. Nonlinear Analysis: Theory Methods Appl. 7 (1983), 11, 1163-1173.
DOI |
MR 0721403 |
Zbl 0525.93053
[4] Bahgat, A. B. G., Helwa, N. H., Ahmad, G. E., Shenawy, E. T. El:
Maximum power point traking controller for pv systems using neural networks. Renewable Energy 30 (2008), 8, 1257-1268.
DOI
[5] Benedek, J., Sebestyén, T.-T., Bartók, B.:
Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development. Renewable Sustainable Energy Rev. 90 (2018), 516-535.
DOI
[6] Bernal, M., Hušek, P., Kučera, V.:
Non quadratic stabilization of continuous-time systems in the Takagi-Sugeno form. Kybernetika 42 (2006), 6, 665-672.
DOI |
MR 2296507
[7] Bernal, M., Sala, A., Lendek, Z., Guerra, T. M.:
Analysis and Synthesis of Nonlinear Control Systems: A Convex Optimisation Approach. Springer, Cham 2022.
MR 4397563
[8] Bharath, K. R., Suresh, E.: Design and implementation of improved fractional open circuit voltage based maximum power point tracking algorithm for photovoltaic applications. Int. J. Renewable Energy Ress. (IJRER) 7 (2017), 3, 1108-1113.
[9] Boyd, S., ElGhaoui, L., Féron, E., Balakrishnan, V.:
Linear Matrix Inequalities in System and Control Theory. Studies in Applied Mathematics 15, Philadelphia 1994.
MR 1284712
[10] Chiu, Ch. S.:
Ts fuzzy maximum power point tracking control of solar power generation systems. IEEE Trans. Energy Convers. 25 (2010). 4, 1123-1132.
DOI
[11] Chiu, Ch. S., Ouyang, Y. L.:
Robust maximum power tracking control of uncertain photovoltaic systems: A unified ts fuzzy model-based approach. IEEE Trans. Control Systems Technol. 19 (2011), 6, 1516-1526.
DOI
[12] M, Z., Dalala, Zahid, Z. U., Yu, W., Cho, Y., Lai, J.-S.:
Design and analysis of an mppt technique for small-scale wind energy conversion systems. IEEE Trans. Energy Convers. 28 (2013), 3, 756-767.
DOI
[13] Elgendy, M. A., Zahawi, B., Atkinson, D. J.:
Assessment of the incremental conductance maximum power point tracking algorithm. IEEE Trans. Sustainable Energy 4 (2012), 1, :108-117.
DOI
[14] Faranda, R., Leva, S., Maugeri, V.: MPPT techniques for PV systems: Energetic and cost comparison. In: 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,IEEE 2008, pp. 1-6.
[15] Gahinet, P., Nemirovsky, A., Laub, A. J., Chilali, M.: LMI Control Toolbox. Math Works, Natick 1995.
[16] Gupta, A. K., Saxena, R.:
Review on widely-used MPPT techniques for PV applications. In: 2016 International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH), IEEE 2016, pp. 270-273.
DOI
[17] Khalil, H. K.: Nonlinear Control. Pearson Higher Ed, 2014.
[18] Lalili, D., Mellit, A., Lourci, N., Medjahed, B., Berkouk, E. M.:
Input output feedback linearization control and variable step size mppt algorithm of a grid-connected photovoltaic inverter. Renewable Energy 36 (2011), 12, 3282-3291.
DOI
[19] Mahmoud, Y., Abdelwahed, M., El-Saadany, E. F.: An enhanced mppt method combining model-based and heuristic techniques. IEEE Trans. Sustainable Energy 7 (2015), 2, 76-585.
[20] Mao, M., Zhang, L., Yang, L., Chong, B., Huang, H., Zhou, L.:
MPPT using modified salp swarm algorithm for multiple bidirectional pv-ćuk converter system under partial shading and module mismatching. Solar Energy 209 (2020), 334-349.
DOI
[21] Mokhtari, Y., Rekioua, D.:
High performance of maximum power point tracking using ant colony algorithm in wind turbine. Renewable Energy 126 (2018), 1055-1063.
DOI
[22] Owusu, P. A., Asumadu-Sarkodie, S.:
A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engrg. 3 (2016), 1, 1167990.
DOI
[23] Pandey, A., Dasgupta, N., Mukerjee, A. K.: High-performance algorithms for drift avoidance and fast tracking in solar mppt system.
[24] Pilakkat, D., Kanthalakshmi, S.:
An improved p&o algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions. Solar Energy 178 (2019), 37-47.
DOI
[25] Qazi, A., Hussain, F., Rahim, N. A. B. D., Hardaker, G., Alghazzawi, D., Shaban, K., Haruna, K.:
Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions. IEEE Acess 7 (2019), 63837-63851.
DOI
[26] Salimi, M.:
Practical implementation of the lyapunov based nonlinear controller in dc-dc boost converter for mppt of the pv systems. Solar Energy 173 (2018), 246-255.
DOI
[27] Sandali, A., Oukhoya, T., Cheriti, A.: Modeling and design of pv grid connected system using a modified fractional short-circuit current mppt. In: 2014 International Renewable and Sustainable Energy Conference (IRSEC), IEEE 2014, pp. 224-229.
[28] Sera, D., Mathe, L., Kerekes, T., Spataru, S. V., Teodorescu, R.:
On the perturb-and-observe and incremental conductance mppt methods for pv systems. IEEE J. Photovoltaics 3 (2013), 3, :1070-1078.
DOI
[29] Sokolov, M., Shmilovitz, D.:
A modified mppt scheme for accelerated convergence. IEEE Trans. Energy Convers. 23 (2008), 4, 1105-1107.
DOI
[30] Sontag, E. D.:
A universal construction of artstein's theorem on nonlinear stabilization. Systems Control Lett. 13 (1989), 2, 117-123.
DOI |
MR 1014237
[31] Taniguchi, T., Tanaka, K., Wang, H. O.:
Model contruction, rule reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Systems 9 (2001), 4, 525-538.
DOI